Carbon nanotubes were prepared by an arc-discharge method,
under different values of pressure of oxygen gas. The structure of
multi-walled carbon nanotubes powders has been characterized by
low-angle X-ray diffraction .The morphology of carbon nanotube
powder was examined by transmission electron microscope. The
capacitance-voltage and current- voltage (dark and illumination
current) characterization were measured under different values of
pressure (10-3, 10-4, 10-5) mbar of oxygen gas
Phytoplankton community is a model for of monitoring aquatic systems and interpreting the environmental change in aquatic systems. The present study aimed to forecast environmental parameters that drive the change of phytoplankton community structure in the lake. The present study was carried out in Baghdad Tourist Island Lake (BTIL) for the period From October 2021 to May 2022. The study included the quality and quantity of phytoplankton, moreover, the highest and lowest value of the physical and chemical parameters were (Water temperature (13-30 °C), Light penetration (94-275cm), electric conductivity (837-1128 µS/cm), salinity (0.5-0.7 ‰), pH (7-8.2), total alkalinity (126-226 mg CaCO3/L), total Hardness (297-395 mg CaCO3/L
... Show MoreThe skin temperature of the earth’s surface is referred to as the Land Surface Temperature (LST). the availability of long-term and high-quality temperature records is important for various uses that affect people’s lives and livelihoods. Much valid information was provided to this research from remote sensing technology by using Landsat 8 (L8) imagery to estimate LST for Al-Ahdab oil field in Wasit city in Iraq. The aim of this research is to analyze LST variations based on Landsat 8 data for 2022 (January, April, July, and October). ArcMap 10.8 was used to estimate LST results. The results values ranged from (about 10 C in January to about 46 C in July). The results show that LS
Abstract This research investigates how activated carbon (AC) was synthesized from potato peel waste (PPW). Different ACs were synthesized under the atmosphere's conditions during carbonation via two activation methods: first, chemical activation, and second, carbon dioxide-physical activation. The influence of the drying period on the preparation of the precursor and the methods of activation were investigated. The specific surface area and pore volume of the activated carbon were estimated using the Brunauer–Emmett–Teller method. The AC produced using physical activation had a surface area as high as 1210 m2/g with a pore volume of 0.37 cm3/g, whereas the chemical activation had a surface area of 1210 m2/g with a pore volume of 0.34 c
... Show MoreIn this study three reactive dyes (blue B, red R and yellow Y) in single , binary and ternary solution were adsorbed by activated carbon AC in equilibrium and kinetic experiments. Surface area, Bulk and real density, and porosity were carried out for the activated carbon.
Batch Experiments of pH (2.5-8.5) and initial concentration (5-100) mg/l were carried out for single solution for each dye. Experiments of adsorbent dosage effect (0.1-1)g per 100 ml were studied as a variable to evaluate uptake% and adsorption capacity for single dyes(5, 10) ppm, binary and ternary (10) ppm of mixture solutions solution of dyes. Langmuir, and Freundlich, models were used as Equilibrium isotherm models for single solution. Extended Langmuir and Freun
Activated carbon was Produced from coconut shell and was used for removing sulfate from industrial waste water in batch Processes. The influence of various parameter were studied such as pH (4.5 – 9.) , agitation time (0 – 120)min and adsorbent dose (2 – 10) gm.
The Langmuir and frandlich adsorption capacity models were been investigated where showed there are fitting with langmmuir model with squre regression value ( 0.76). The percent of removal of sulfate (22% - 38%) at (PH=7) in the isotherm experiment increased with adsorbent mass increasing. The maximum removal value of sulfate at different pH experiments is (43%) at pH=7.
Hand-lay up method was used to prepare the samples made of epoxy (EP) as a matrix reinforced with chopped carbon fibers (CCF). The fatigue behavior of epoxy resin /chopped carbon fiber composites was studied with different weight percentage of chopped carbon fibers (2.5%,5%,7.5%,10%,12.5%). The fatigue test was carried out under alternate bending method, which was made by applying sinusoidal wave with constant displacement (15mm), stress ratio R=-1,and loading frequency 10Hz, which is believed to give a negligible temperature rise during the test. The results of the maximum stress, fatigue strength, fatigue limit and fatigue life of the tested composites are calculated from stress(S)-number of cycles(N) (S-N) curves.
It was shown that
Overlapped have been prepared from epoxy resin material added to carbon Nanotube and percentages weight (0.1, 0.05, 0.01) % Studied the mechanical properties of the composite (bending, tensile an d hardness) has been found that the Flexural and tensile modulus of the composites were higher than the pure epoxy resin this may be due to the high mechanical strength of carbon nano tube (CNT). The hardness of the epoxy carbon Nanotube composites increased and the reason is due to increased overlap and stacking between the additives and material basis, which reduces the movement of polymer molecules leading to increased resistance to scratching material and cutting, will become more resistance to plastic deformation.
The thermal method was used to produce silicoaluminophosphate (SAPO-11) with different amounts of carbon nanotubes (CNT). XRD, nitrogen adsorption-desorption, SEM, AFM, and FTIR were used to characterize the prepared catalyst. It was discovered that adding CNT increased the crystallinity of the synthesize SAPO-11 at all the temperatures which studied, wile the maximum surface area was 179.54 m2/g obtained at 190°C with 7.5 percent of CNT with a pore volume of 0.317 cm3/g ,and with nano-particles with average particle diameter of 24.8 nm, while the final molar composition of the prepared SAPO-11 was (Al2O3:0.93P2O5:0.414SiO2).
There are no single materials which can withstand all the extreme operating conditions in modern technology. Protection of the metals from hostile environments has therefore become a technical and economic necessity.
In this work, for enhancing their wear-resistance, boride layers were deposited on the surface of low carbon steel by a pack cementation method at 850 °C for (2, 4, and 6) h using vacuum furnace. The boronizing process was achieved using different concentration of boron source (20, 25, and 30) % wt. into coating mixture to optimize the best conditions which ensure the higher properties with lower time. The coating was characteristic by X ray diffraction (XRD), and it is confirmed t
... Show More