Preferred Language
Articles
/
Txf1Q48BVTCNdQwC2mjf
Pathfinding in Strategy Games and Maze Solving Using A* Search Algorithm

Crossref
View Publication
Publication Date
Sun Apr 29 2018
Journal Name
Iraqi Journal Of Science
Solving Flexible Job Shop Scheduling Problem Using Meerkat Clan Algorithm

Meerkat Clan Algorithm (MCA) that is a swarm intelligence algorithm resulting from watchful observation of the Meerkat (Suricata suricatta) in the Kalahari Desert in southern Africa. Meerkat has some behaviour. Sentry, foraging, and baby-sitter are the behaviour used to build this algorithm through dividing the solution sets into two sets, all the operations are performed on the foraging set. The sentry presents the best solution. The Flexible Job Shop Scheduling Problem (FJSSP) is vital in the two fields of generation administration and combinatorial advancement. In any case, it is very hard to accomplish an ideal answer for this problem with customary streamlining approaches attributable to the high computational unpredictability. Most

... Show More
View Publication Preview PDF
Publication Date
Wed Feb 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Using Fuzzy Games Theory to Determine the optimal Strategy for The Mobile Phone Networks in The Baghdad And Basra governorates

      The objective of this research is employ the special cases of  function  trapezoid in the composition of fuzzy sets to make decision within the framework of the theory of games traditional to determine the best strategy for the mobile phone networks in the province of  Baghdad and Basra, has been the adoption of different periods of the  functions belonging to see the change happening in the matrix matches and the impact  that the strategies  and decision-making  available to each player and the impact on  societ

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Oct 10 2021
Journal Name
Journal Of Physics
A novel kite cross hexagonal search algorithm for fast block motion estimation

The performance quality and searching speed of Block Matching (BM) algorithm are affected by shapes and sizes of the search patterns used in the algorithm. In this paper, Kite Cross Hexagonal Search (KCHS) is proposed. This algorithm uses different search patterns (kite, cross, and hexagonal) to search for the best Motion Vector (MV). In first step, KCHS uses cross search pattern. In second step, it uses one of kite search patterns (up, down, left, or right depending on the first step). In subsequent steps, it uses large/small Hexagonal Search (HS) patterns. This new algorithm is compared with several known fast block matching algorithms. Comparisons are based on search points and Peak Signal to Noise Ratio (PSNR). According to resul

... Show More
Preview PDF
Scopus (2)
Scopus
Publication Date
Sun Jan 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A parallel Numerical Algorithm For Solving Some Fractional Integral Equations

In this study, He's parallel numerical algorithm by neural network is applied to type of integration of fractional equations is Abel’s integral equations of the 1st and 2nd kinds. Using a Levenberge – Marquaradt training algorithm as a tool to train the network. To show the efficiency of the method, some type of Abel’s integral equations is solved as numerical examples. Numerical results show that the new method is very efficient problems with high accuracy.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
CTJ: Input-Output Based Relation Combinatorial Testing Strategy Using Jaya Algorithm

Software testing is a vital part of the software development life cycle. In many cases, the system under test has more than one input making the testing efforts for every exhaustive combination impossible (i.e. the time of execution of the test case can be outrageously long). Combinatorial testing offers an alternative to exhaustive testing via considering the interaction of input values for every t-way combination between parameters. Combinatorial testing can be divided into three types which are uniform strength interaction, variable strength interaction and input-output based relation (IOR). IOR combinatorial testing only tests for the important combinations selected by the tester. Most of the researches in combinatorial testing

... Show More
View Publication
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
CTJ: Input-Output Based Relation Combinatorial Testing Strategy Using Jaya Algorithm

Software testing is a vital part of the software development life cycle. In many cases, the system under test has more than one input making the testing efforts for every exhaustive combination impossible (i.e. the time of execution of the test case can be outrageously long). Combinatorial testing offers an alternative to exhaustive testing via considering the interaction of input values for every t-way combination between parameters. Combinatorial testing can be divided into three types which are uniform strength interaction, variable strength interaction and input-output based relation (IOR). IOR combinatorial testing only tests for the important combinations selected by the tester. Most of the researches in combinatorial testing appli

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Tue Oct 16 2018
Journal Name
Springer Science And Business Media Llc
MOGSABAT: a metaheuristic hybrid algorithm for solving multi-objective optimisation problems

Scopus (58)
Crossref (40)
Scopus Clarivate Crossref
Publication Date
Sun May 26 2019
Journal Name
Iraqi Journal Of Science
Exact and Local Search Methods for Solving Travelling Salesman Problem with Practical Application

This paper investigates some exact and local search methods to solve the traveling salesman problem. The Branch and Bound technique (BABT) is proposed, as an exact method, with two models. In addition, the classical Genetic Algorithm (GA) and Simulated Annealing (SA) are discussed and applied as local search methods. To improve the performance of GA we propose two kinds of improvements for GA; the first is called improved GA (IGA) and the second is Hybrid GA (HGA).

The IGA gives best results than GA and SA, while the HGA is the best local search method for all within a reasonable time for 5 ≤ n ≤ 2000, where n is the number of visited cities. An effective method of reducing the size of the TSP matrix was proposed with

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Wed Jan 01 2014
Journal Name
Scienceasia
A combined compact genetic algorithm and local search method for optimizing the ARMA(1,1) model of a likelihood estimator

In this paper, a compact genetic algorithm (CGA) is enhanced by integrating its selection strategy with a steepest descent algorithm (SDA) as a local search method to give I-CGA-SDA. This system is an attempt to avoid the large CPU time and computational complexity of the standard genetic algorithm. Here, CGA dramatically reduces the number of bits required to store the population and has a faster convergence. Consequently, this integrated system is used to optimize the maximum likelihood function lnL(φ1, θ1) of the mixed model. Simulation results based on MSE were compared with those obtained from the SDA and showed that the hybrid genetic algorithm (HGA) and I-CGA-SDA can give a good estimator of (φ1, θ1) for the ARMA(1,1) model. Anot

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Iraqi Journal Of Science
Using Multi-Objective Bat Algorithm for Solving Multi-Objective Non-linear Programming Problem

Human beings are greatly inspired by nature. Nature has the ability to solve very complex problems in its own distinctive way. The problems around us are becoming more and more complex in the real time and at the same instance our mother nature is guiding us to solve these natural problems. Nature gives some of the logical and effective ways to find solutions to these problems. Nature acts as an optimized source for solving the complex problems.  Decomposition is a basic strategy in traditional multi-objective optimization. However, it has not yet been widely used in multi-objective evolutionary optimization.   

Although computational strategies for taking care of Multi-objective Optimization Problems (MOPs) h

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (7)
Scopus Crossref