In these recent years, the world has witnessed a kind of social exclusion and the inability to communicate directly due to the Corona Virus Covid 19 (COVID-19) pandemic, and the consequent difficulty of communicating with patients with hospitals led to the need to use modern technology to solve and facilitate the problem of people communicating with each other. healthcare has made many remarkable developments through the Internet of things (IOT) and cloud computing to monitor real-time patients' data, which has enabled many patients' lives to be saved. this paper presents the design and implementation of a Private Backend Server Software based on an IoT health monitoring system concerned emergency medical services utilizing biosensors to detect multivital signs of an individual with an ESP32 microcontroller board and IoT cloud. The device displays the vital data, which is then uploaded to a cloud server for storage and analysis over an IoT network. Vital data is received from the cloud server and shown on the IoT medical client dashboard for remote monitoring. The proposed system allows users to ameliorate healthcare jeopardy and minify its costs by recording, gathering, sharing, and analyzing vast biodata streams such as Intensive Care Units (ICU) (i.e., temperature, heartbeat rate, Oxygen level (CO2), etc.), efficiently in real-time. In this proposal, the data will send from sensors fixed in the patient body to the Web and Mobile App continually in real time for collection and analysis.
Nowadays, many new technologies developed in a lot of countries. These technologies are promising in many areas such as environmental monitoring, precision agriculture as well as in animal production. The purpose of this study was to define a better understanding of how new and advanced technologies affect the agriculture and livestock sector alike. Although agriculture and animal husbandry are among the most important sectors, advanced equipment and information technology cannot be used adequately. This situation leads to low production efficiency. It is also known that there can be a significant difference in temperature between the position of the climate control sensor (room temperature) and the area occupied by the animal. This study e
... Show MoreThe software-defined network (SDN) is a new technology that separates the control plane from data plane for the network devices. One of the most significant issues in the video surveillance system is the link failure. When the path failure occurs, the monitoring center cannot receive the video from the cameras. In this paper, two methods are proposed to solve this problem. The first method uses the Dijkstra algorithm to re-find the path at the source node switch. The second method uses the Dijkstra algorithm to re-find the path at the ingress node switch (or failed link).
... Show MoreSince the introduction of the HTTP/3, research has focused on evaluating its influences on the existing adaptive streaming over HTTP (HAS). Among these research, due to irrelevant transport protocols, the cross-protocol unfairness between the HAS over HTTP/3 (HAS/3) and HAS over HTTP/2 (HAS/2) has caught considerable attention. It has been found that the HAS/3 clients tend to request higher bitrates than the HAS/2 clients because the transport QUIC obtains higher bandwidth for its HAS/3 clients than the TCP for its HAS/2 clients. As the problem originates from the transport layer, it is likely that the server-based unfairness solutions can help the clients overcome such a problem. Therefore, in this paper, an experimental study of the se
... Show MoreBipedal robotic mechanisms are unstable due to the unilateral contact passive joint between the sole and the ground. Hierarchical control layers are crucial for creating walking patterns, stabilizing locomotion, and ensuring correct angular trajectories for bipedal joints due to the system’s various degrees of freedom. This work provides a hierarchical control scheme for a bipedal robot that focuses on balance (stabilization) and low-level tracking control while considering flexible joints. The stabilization control method uses the Newton–Euler formulation to establish a mathematical relationship between the zero-moment point (ZMP) and the center of mass (COM), resulting in highly nonlinear and coupled dynamic equations. Adaptiv
... Show MoreThe present work presents design and implementation of an automated two-axis solar tracking system using local materials with minimum cost, light weight and reliable structure. The tracking system consists of two parts, mechanical units (fixed and moving parts) and control units (four LDR sensors and Arduino UNO microcontroller to control two DC servomotors). The tracking system was fitted and assembled together with a parabolic trough solar concentrator (PTSC) system to move it according to information come from the sensors so as to keep the PTSC always perpendicular to sun rays. The experimental tests have been done on the PTSC system to investigate its thermal performance in two cases, with tracking system (case 1) and without trackin
... Show More