Identification of complex communities in biological networks is a critical and ongoing challenge since lots of network-related problems correspond to the subgraph isomorphism problem known in the literature as NP-hard. Several optimization algorithms have been dedicated and applied to solve this problem. The main challenge regarding the application of optimization algorithms, specifically to handle large-scale complex networks, is their relatively long execution time. Thus, this paper proposes a parallel extension of the PSO algorithm to detect communities in complex biological networks. The main contribution of this study is summarized in three- fold; Firstly, a modified PSO algorithm with a local search operator is proposed to detect complex biological communities with high quality. Secondly, the variability in the capability of PSO to extract community structure in biological networks is studied when different types of crossover operators are used. Finally, to reduce the computational time needed to solve this problem, especially when detecting complex communities in large-scale biological networks, we have implemented parallel computing to execute the algorithm. The performance of the proposed algorithm was tested and evaluated on two real biological networks. The experimental results showed the effective performance of the proposed algorithm when using single-point crossover operator, and its superiority over other counterpart algorithms. Moreover, the use of parallel computing in the proposed algorithm representation has greatly reduced the computational time required for its execution.
Peak ground acceleration (PGA) is one of the critical factors that affect the determination of earthquake intensity. PGA is generally utilized to describe ground motion in a particular zone and is able to efficiently predict the parameters of site ground motion for the design of engineering structures. Therefore, novel models are developed to forecast PGA in the case of the Iraqi database, which utilizes the particle swarm optimization (PSO) approach. A data set of 187 historical ground-motion recordings in Iraq’s tectonic regions was used to build the explicit proposed models. The proposed PGA models relate to different seismic parameters, including the magnitude of the earthquake (Mw), average shear-wave velocity (VS30), focal depth (FD
... Show MoreDiverting river flow during construction of a main dam involves the construction of cofferdams, and tunnels, channels or other temporary passages. Diversion channels are commonly used in wide valleys where the high flow makes tunnels or culverts uneconomic. The diversion works must form part of the overall project design since it will have a major impact on its cost, as well as on the design, construction program and overall cost of the permanent works. Construction costs contain of excavation, lining of the channel, and construction of upstream and downstream cofferdams. The optimization model was applied to obtain optimalchannel cross section, height of upstream cofferdam, and height of downstream cofferdamwith minimum construction cost
... Show MoreIn this study, He's parallel numerical algorithm by neural network is applied to type of integration of fractional equations is Abel’s integral equations of the 1st and 2nd kinds. Using a Levenberge – Marquaradt training algorithm as a tool to train the network. To show the efficiency of the method, some type of Abel’s integral equations is solved as numerical examples. Numerical results show that the new method is very efficient problems with high accuracy.
The biometric-based keys generation represents the utilization of the extracted features from the human anatomical (physiological) traits like a fingerprint, retina, etc. or behavioral traits like a signature. The retina biometric has inherent robustness, therefore, it is capable of generating random keys with a higher security level compared to the other biometric traits. In this paper, an effective system to generate secure, robust and unique random keys based on retina features has been proposed for cryptographic applications. The retina features are extracted by using the algorithm of glowworm swarm optimization (GSO) that provides promising results through the experiments using the standard retina databases. Additionally, in order t
... Show More