Identification of complex communities in biological networks is a critical and ongoing challenge since lots of network-related problems correspond to the subgraph isomorphism problem known in the literature as NP-hard. Several optimization algorithms have been dedicated and applied to solve this problem. The main challenge regarding the application of optimization algorithms, specifically to handle large-scale complex networks, is their relatively long execution time. Thus, this paper proposes a parallel extension of the PSO algorithm to detect communities in complex biological networks. The main contribution of this study is summarized in three- fold; Firstly, a modified PSO algorithm with a local search operator is proposed to detect complex biological communities with high quality. Secondly, the variability in the capability of PSO to extract community structure in biological networks is studied when different types of crossover operators are used. Finally, to reduce the computational time needed to solve this problem, especially when detecting complex communities in large-scale biological networks, we have implemented parallel computing to execute the algorithm. The performance of the proposed algorithm was tested and evaluated on two real biological networks. The experimental results showed the effective performance of the proposed algorithm when using single-point crossover operator, and its superiority over other counterpart algorithms. Moreover, the use of parallel computing in the proposed algorithm representation has greatly reduced the computational time required for its execution.
Gumbel distribution was dealt with great care by researchers and statisticians. There are traditional methods to estimate two parameters of Gumbel distribution known as Maximum Likelihood, the Method of Moments and recently the method of re-sampling called (Jackknife). However, these methods suffer from some mathematical difficulties in solving them analytically. Accordingly, there are other non-traditional methods, like the principle of the nearest neighbors, used in computer science especially, artificial intelligence algorithms, including the genetic algorithm, the artificial neural network algorithm, and others that may to be classified as meta-heuristic methods. Moreover, this principle of nearest neighbors has useful statistical featu
... Show MoreGroundwater is an important resource that can be used for various purposes. Various factors can change the chemistry of the GW, such as the chemical composition of an aquifer as well as the leaching of human waste into groundwater. The study area is a barren land covered by some sabkhas, in addition to some agricultural fields. The study aims to assess groundwater quality for drinking purposes using the Water Quality Index. The groundwater is chemically heterogeneous and has a wide quality range from very poor to excellent. Evaporation appears to be the controlling factor among the other shallow waters, while relatively deep water is related to rock-soil dominance. Rocks, land use and land cover have helped control the groundwater q
... Show MoreThe aim of this paper, is to discuss several high performance training algorithms fall into two main categories. The first category uses heuristic techniques, which were developed from an analysis of the performance of the standard gradient descent algorithm. The second category of fast algorithms uses standard numerical optimization techniques such as: quasi-Newton . Other aim is to solve the drawbacks related with these training algorithms and propose an efficient training algorithm for FFNN
The development of wireless sensor networks (WSNs) in the underwater environment leads to underwater WSN (UWSN). It has severe impact over the research field due to its extensive and real-time applications. However effective execution of underwater WSNs undergoes several problems. The main concern in the UWSN is sensor nodes’ energy depletion issue. Energy saving and maintaining quality of service (QoS) becomes highly essential for UWASN because of necessity of QoS application and confined sensor nodes (SNs). To overcome this problem, numerous prevailing methods like adaptive data forwarding techniques, QoS-based congestion control approaches, and various methods have been devised with maximum throughput and minimum network lifesp
... Show MoreThis research presents a model for surveying networks configuration which is designed and called a Computerized Integrated System for Triangulation Network Modeling (CISTNM). It focuses on the strength of figure as a concept then on estimating the relative error (RE) for the computed side (base line) triangulation element. The CISTNM can compute the maximum elevations of the highest
obstacles of the line of sight, the observational signal tower height, the contribution of each triangulation station with their intervisibility test and analysis. The model is characterized by the flexibility to select either a single figure or a combined figures network option. Each option includes three other implicit options such as: triangles, quadri
In this paper, we characterize the percolation condition for a continuum secondary cognitive radio network under the SINR model. We show that the well-established condition for continuum percolation does not hold true in the SINR regime. Thus, we find the condition under which a cognitive radio network percolates. We argue that due to the SINR requirements of the secondaries along with the interference tolerance of the primaries, not all the deployed secondary nodes necessarily contribute towards the percolation process- even though they might participate in the communication process. We model the invisibility of such nodes using the concept of Poisson thinning, both in the presence and absence of primaries. Invisibility occurs due to nodes
... Show MoreThe development of wireless sensor networks (WSNs) in the underwater environment leads to underwater WSN (UWSN). It has severe impact over the research field due to its extensive and real-time applications. However effective execution of underwater WSNs undergoes several problems. The main concern in the UWSN is sensor nodes’ energy depletion issue. Energy saving and maintaining quality of service (QoS) becomes highly essential for UWASN because of necessity of QoS application and confined sensor nodes (SNs). To overcome this problem, numerous prevailing methods like adaptive data forwarding techniques, QoS-based congestion control approaches, and various methods have been devised with maximum throughput and minimum network lifesp
... Show MoreA novel ligand, (E)-5-((2-hydroxy-4,6-dimethylphenyl)diazenyl)-2,3-dihydrophthalazine-1,4- dione, was synthesized through the reaction of 3,5-dimethylphenol with the diazonium salt of 5-amino-2,3-dihydrophthalazine-1,4-dione. The ligand underwent characterization through the utilization of diverse spectroscopic methods, including UV-Vis, FT-IR, 13C, and 1H-NMR, alongside Mass spectroscopy and micro elemental analysis (Carbon, Hydrogen, Nitrogen, and Oxygen). Metal chelates of transition metals were prepared and analyzed using elemental analysis, mass spectra, atomic absorption, UV-Vis, FT-IR spectral analysis, as well as conductivity and magnetic measurements. The investigation into the compounds’ nature was conducted by utilizing mole r
... Show More