Preferred Language
Articles
/
TxdwZo8BVTCNdQwCv3ZE
Detection of Anti-rubella virus, Cytomegalovirus and Chlamydia pneumonia antibodies in patients with type I diabetes mellitus
...Show More Authors

Type-1 diabetes is defined as destruction of pancreatic beta cell, virus and bacteria are some environmental factor for this disease. The study included 25 patients with type-1 diabetes mellitus aged between 8 – 25 years from Baghdad hospital and 20 healthy persons as control group. Anti-rubella IgG and IgM, anti-Chlamydia pneumonia IgG and IgM were measured by ELISA technique while anti-CMV antibody were measured by immunofluorescence technique. The aim of current study was to know the trigger factor for type-1 diabetes. There were significant differences (P<0.05) between studied groups according to parameters and the results lead to suggest that Chlamydia pneumonia, CMV and rubella virus may trigger type-1 diabetes mellitus in Iraqi patients.

Publication Date
Thu Feb 01 2018
Journal Name
European Journal Of General Medicine
The Value of Longitudinal Strain versus Coronary Angiography in Detection of Coronary Artery Disease
...Show More Authors

Aims: The aim of this study was to evaluate the value and accuracy of longitudinal strain in detection of coronary artery disease compared to coronary angiography. Results: The left ventricular longitudinal strain-speckle tracking showed evidence of stenosis of left anterior descending artery, circumflex artery and right coronary artery in (86.1%), (76.4%), and (84.7%) respectively. For the stenosis in left anterior descending artery, the current study showed that the longitudinal strain was a good predictor for presence of significant stenosis with a sensitivity of (93.8%), specificity (75%) and accuracy (91.7%) compared with coronary angiography. For the stenosis in right coronary artery, the left ventricular longitudinal strain had

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Fri Apr 30 2021
Journal Name
Al-kindy College Medical Journal
The Role of MRI-US Fusion Techniques in Detection of Clinically Significant Prostate Cancer
...Show More Authors

Prostate cancer is the commonest male cancer and the second leading cause of cancer-related death in men. Over many decades, prostate cancer detection represented a continuous challenge to urologists. Although all urologists and pathologists agree that tissue diagnosis is essential especially before commencing active surgical or radiation treatment, the best way to obtain the biopsy was always the big hurdle. The heterogenicity of the tumor pathology is very well seen in its radiological appearance. Ultrasound has been proven to be of limited sensitivity and specificity in detecting prostate cancer. However, it was the only available targeting technique for years and was used to guide biopsy needle passed transrectally or transperineally

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Aug 31 2022
Journal Name
Iraqi Journal Of Science
Detection of TNF Alpha Level as Biomarker in Different Stages of Cutaneous Leishmaniasis Infection
...Show More Authors

       Leishmaniasis is a global illness that is endemic in many countries, including Iraq. The characteristic of cutaneous leishmaniasis (CL) is the development of skin ulcers that are controlled by the immune system. Tumor necrosis factor-alpha (TNF-α), a cytokine generated by the innate immune response to CL infection, can influence disease clearance in the human host. The effect of this pro-inflammatory cytokine in CL ulcer development during the infection is not well established. In this study TNF-α level was detected in the patients who suffered from cutaneous leishmaniasis. This level was also assessed in the newly diagnosed patients and others who were undergoing different stages of pentostam treatment. Notably the result

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (4)
Scopus Crossref
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Journal Of Science
Detection of Quorum Sensing Genes of Pseudomonas aeruginosa Isolated from Different Areas in Iraq
...Show More Authors

     Pseudomonas aeruginosa is an opportunistic pathogen. Quorum sensing (QS) is one of processes that are responsible for biofilm formation. P. aeruginosa can live in different environments, some of which are pathogenic (clinical isolates) and some that are found outside the body (environmental isolates). The present study aimed to determine the presence of a number of genes responsible for QS in clinical and environmental isolates of P. aeruginosa. In the present study full DNA was separated from all environmental and clinical isolates that contained seven genes (rhlA, rhlR, rhlI, lasR, lasI, lasB, phzA1) associated with QS occurrence. The tot

... Show More
View Publication Preview PDF
Scopus (5)
Scopus Crossref
Publication Date
Sun Jan 16 2022
Journal Name
Iraqi Journal Of Science
Auto Crop and Recognition for Document Detection Based on its Contents
...Show More Authors

An Auto Crop method is used for detection and extraction signature, logo and stamp from the document image. This method improves the performance of security system based on signature, logo and stamp images as well as it is extracted images from the original document image and keeping the content information of cropped images. An Auto Crop method reduces the time cost associated with document contents recognition. This method consists of preprocessing, feature extraction and classification. The HSL color space is used to extract color features from cropped image. The k-Nearest Neighbors (KNN) classifier is used for classification. 

View Publication Preview PDF
Publication Date
Mon Mar 01 2021
Journal Name
Al-khwarizmi Engineering Journal
Hurst Exponent and Tsallis Entropy Markers for Epileptic Detection from Children
...Show More Authors

The aim of the present study was to distinguish between healthy children and those with epilepsy by electroencephalography (EEG). Two biomarkers including Hurst exponents (H) and Tsallis entropy (TE) were used to investigate the background activity of EEG of 10 healthy children and 10 with epilepsy. EEG artifacts were removed using Savitzky-Golay (SG) filter. As it hypothesize, there was a significant changes in irregularity and complexity in epileptic EEG in comparison with healthy control subjects using t-test (p< 0.05). The increasing in complexity changes were observed in H and TE results of epileptic subjects make them suggested EEG biomarker associated with epilepsy and a reliable tool for detection and identification of this di

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
SMS Spam Detection Using Multiple Linear Regression and Extreme Learning Machines
...Show More Authors

     With the growth of the use mobile phones, people have become increasingly interested in using Short Message Services (SMS) as the most suitable communications service. The popularity of SMS has also given rise to SMS spam, which refers to any unwanted message sent to a mobile phone as a text. Spam may cause many problems, such as traffic bottlenecks or stealing important users' information. This paper,  presents a new model that extracts seven features from each message before applying a Multiple Linear Regression (MLR) to assign a weight to each of the extracted features. The message features are fed into the Extreme Learning Machine (ELM) to determine whether they are spam or ham. To evaluate the proposed model, the UCI bench

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Wed Dec 13 2023
Journal Name
2023 3rd International Conference On Intelligent Cybernetics Technology &amp; Applications (icicyta)
GPT-4 versus Bard and Bing: LLMs for Fake Image Detection
...Show More Authors

The recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital med

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Mon Dec 14 2020
Journal Name
2020 13th International Conference On Developments In Esystems Engineering (dese)
Anomaly Based Intrusion Detection System Using Hierarchical Classification and Clustering Techniques
...Show More Authors

With the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Journal Of Science
Breast Cancer Detection using Decision Tree and K-Nearest Neighbour Classifiers
...Show More Authors

      Data mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the  most effective parameter, particularly when Age<49.5. Whereas  Ki67  appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimum err

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (6)
Scopus Crossref