Wellbore instability is one of the most common issues encountered during drilling operations. This problem becomes enormous when drilling deep wells that are passing through many different formations. The purpose of this study is to evaluate wellbore failure criteria by constructing a one-dimensional mechanical earth model (1D-MEM) that will help to predict a safe mud-weight window for deep wells. An integrated log measurement has been used to compute MEM components for nine formations along the studied well. Repeated formation pressure and laboratory core testing are used to validate the calculated results. The prediction of mud weight along the nine studied formations shows that for Ahmadi, Nahr Umr, Shuaiba, and Zubair formations ranges between 12.5 to 15 ppg. The predicted safe mud weight value seems to be narrow with a well deviation higher than 350. Therefore, for Ahmadi, Nahr Umr, Shuaiba, and Zubair formations, the wellbore appears unstable compared to other formations. The results of stability analyses indicate that the breakout mud weight wasn’t affected by wellbore azimuth because of low-stress contrast. Furthermore, shear failure can be prevented by drilling the well with an inclination of less than 350. As well as, to prevent breakdown the well should be drilled with an inclination between 25o to 65o in the direction of minimum horizontal stress. These outcomes could be used to prevent wellbore instability and determine a safe mud-weight window when planning to drill nearby wells in the future.
The use of deep learning.
The purpose of this work is to determine the points and planes of 3-dimensional projective space PG(3,2) over Galois field GF(q), q=2,3 and 5 by designing a computer program.
The transportation problem (TP) is employed in many different situations, such as scheduling, performance, spending, plant placement, inventory control, and employee scheduling. When all variables, including supply, demand, and unit transportation costs (TC), are precisely known, effective solutions to the transportation problem can be provided. However, understanding how to investigate the transportation problem in an uncertain environment is essential. Additionally, businesses and organizations should seek the most economical and environmentally friendly forms of transportation, considering the significance of environmental issues and strict environmental legislation. This research employs a novel ranking function to solve the transpor
... Show MoreLonger follow-up defense , one of basketball skills that require the team collective action involving active part and consistent to acquire bouncing balls even not be a chance for members of the team striker acquisition rebounding from the target area and bring it back again , which reduces the chances of scoring, and it enables team members defender of the performance of fast attack and score points for being the increase your chances of success.In light of the foregoing, reflected the importance of research in achieving the objective basis of skill tests that require a circumstance similar to the circumstances of the game with the standard operating procedures for the registration, and that the validity judged by consistency between tests
... Show MoreThis paper provides an attempt for modeling rate of penetration (ROP) for an Iraqi oil field with aid of mud logging data. Data of Umm Radhuma formation was selected for this modeling. These data include weight on bit, rotary speed, flow rate and mud density. A statistical approach was applied on these data for improving rate of penetration modeling. As result, an empirical linear ROP model has been developed with good fitness when compared with actual data. Also, a nonlinear regression analysis of different forms was attempted, and the results showed that the power model has good predicting capability with respect to other forms.
Knowledge of the distribution of the rock mechanical properties along the depth of the wells is an important task for many applications related to reservoir geomechanics. Such these applications are wellbore stability analysis, hydraulic fracturing, reservoir compaction and subsidence, sand production, and fault reactivation. A major challenge with determining the rock mechanical properties is that they are not directly measured at the wellbore. They can be only sampled at well location using rock testing. Furthermore, the core analysis provides discrete data measurements for specific depth as well as it is often available only for a few wells in a field of interest. This study presents a methodology to generate synthetic-geomechani
... Show MoreHorizontal wells are of great interest to the petroleum industry today because they provide an attractive means for improving both production rate and recovery efficiency. The great improvements in drilling technology make it possible to drill horizontal wells with complex trajectories and extended for significant depths.
The aim of this paper is to present the design aspects of horizontal well. Well design aspects include selection of bit and casing sizes, detection of setting depths and drilling fluid density, casing, hydraulics, well profile, and construction of drillstring simulator. An Iraqi oil field (Ajeel field) is selected for designing horizontal well to increase the productivity. Short radius horizontal well is suggested fo
The BEK family of flows have many important practical applications such as centrifugal pumps, steam turbines, turbo-machinery and rotor-stator devices. The Bödewadt, Ekman and von Kármán flows are particular cases within this family. The convective instability of the BEK family of rotating boundary-layer flows has been considered for generalised Newtonian fluids, power-law and Carreau fluids. A linear stability analysis is conducted using a Chebyshev collocation method in order to investigate the effect of shear-thinning and shear-thickening fluids for generalised Newtonian fluids on the convective Type I (inviscid crossflow) and Type II (viscous streamline curvature) modes of instability. The results reveal that shear-thinning power-law
... Show More