Preferred Language
Articles
/
Txdqw48BVTCNdQwCqX27
Wellbore Instability Analysis to Determine the Safe Mud Weight Window for Deep Well, Halfaya Oilfield
...Show More Authors

Wellbore instability is one of the most common issues encountered during drilling operations. This problem becomes enormous when drilling deep wells that are passing through many different formations. The purpose of this study is to evaluate wellbore failure criteria by constructing a one-dimensional mechanical earth model (1D-MEM) that will help to predict a safe mud-weight window for deep wells. An integrated log measurement has been used to compute MEM components for nine formations along the studied well. Repeated formation pressure and laboratory core testing are used to validate the calculated results. The prediction of mud weight along the nine studied formations shows that for Ahmadi, Nahr Umr, Shuaiba, and Zubair formations ranges between 12.5 to 15 ppg. The predicted safe mud weight value seems to be narrow with a well deviation higher than 350. Therefore, for Ahmadi, Nahr Umr, Shuaiba, and Zubair formations, the wellbore appears unstable compared to other formations. The results of stability analyses indicate that the breakout mud weight wasn’t affected by wellbore azimuth because of low-stress contrast. Furthermore, shear failure can be prevented by drilling the well with an inclination of less than 350. As well as, to prevent breakdown the well should be drilled with an inclination between 25o to 65o in the direction of minimum horizontal stress. These outcomes could be used to prevent wellbore instability and determine a safe mud-weight window when planning to drill nearby wells in the future.

Scopus Crossref
View Publication
Publication Date
Wed Aug 31 2022
Journal Name
Iraqi Journal Of Science
Data Mining Methods for Extracting Rumors Using Social Analysis Tools
...Show More Authors

       Rumors are typically described as remarks whose true value is unknown. A rumor on social media has the potential to spread erroneous information to a large group of individuals. Those false facts will influence decision-making in a variety of societies. In online social media, where enormous amounts of information are simply distributed over a large network of sources with unverified authority, detecting rumors is critical. This research proposes that rumor detection be done using Natural Language Processing (NLP) tools as well as six distinct Machine Learning (ML) methods (Nave Bayes (NB), random forest (RF), K-nearest neighbor (KNN), Logistic Regression (LR), Stochastic Gradient Descent (SGD) and Decision Tree (

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Thu Dec 01 2022
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
A survey on bio-signal analysis for human-robot interaction
...Show More Authors

<span lang="EN-US">The use of bio-signals analysis in human-robot interaction is rapidly increasing. There is an urgent demand for it in various applications, including health care, rehabilitation, research, technology, and manufacturing. Despite several state-of-the-art bio-signals analyses in human-robot interaction (HRI) research, it is unclear which one is the best. In this paper, the following topics will be discussed: robotic systems should be given priority in the rehabilitation and aid of amputees and disabled people; second, domains of feature extraction approaches now in use, which are divided into three main sections (time, frequency, and time-frequency). The various domains will be discussed, then a discussion of e

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Fri Feb 10 2023
Journal Name
Energies
Well Placement Optimization through the Triple-Completion Gas and Downhole Water Sink-Assisted Gravity Drainage (TC-GDWS-AGD) EOR Process
...Show More Authors

Gas and downhole water sink-assisted gravity drainage (GDWS-AGD) is a new process of enhanced oil recovery (EOR) in oil reservoirs underlain by large bottom aquifers. The process is capital intensive as it requires the construction of dual-completed wells for oil production and water drainage and additional multiple vertical gas-injection wells. The costs could be substantially reduced by eliminating the gas-injection wells and using triple-completed multi-functional wells. These wells are dubbed triple-completion-GDWS-AGD (TC-GDWS-AGD). In this work, we design and optimize the TC-GDWS-AGD oil recovery process in a fictitious oil reservoir (Punq-S3) that emulates a real North Sea oil field. The design aims at maximum oil recovery us

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Thu Dec 20 2007
Journal Name
Journal Of Planner And Development
To contribute in handling the housing crisis in the city of BaghdadA study for the decision of the Mayoralty of Baghdad to allow adding a third floor for the residential units
...Show More Authors

We need to know the basic facts concerning planning top and bottom limits including any critical levels or the threshold over which the cost would be much higher for land development. Therefore this paper concerned with Baghdad Municipality decision No.2/1004 dated 7/12/2004. The reason behind this decision is the hope to face up at least in the severe housing crisis in the city of Baghdad. This paper attempts to know the attitude of the local community in the general through a field study of people living near such dwelling where third floors are added of. This might indicate any positive or negative effects whether on short or long-term including its effect on the theoretical side including the population growth of Baghdad, the

... Show More
View Publication Preview PDF
Publication Date
Tue Feb 25 2025
Journal Name
Jornal Of Al-muthanna For Agricultural Sciences
A Proposed Approach to Agricultural Extension in Iraq for a Better Response to the Needs of farmer’s to Address Their Challenges
...Show More Authors

View Publication
Publication Date
Wed Mar 08 2023
Journal Name
Sensors
A Critical Review of Remote Sensing Approaches and Deep Learning Techniques in Archaeology
...Show More Authors

To date, comprehensive reviews and discussions of the strengths and limitations of Remote Sensing (RS) standalone and combination approaches, and Deep Learning (DL)-based RS datasets in archaeology have been limited. The objective of this paper is, therefore, to review and critically discuss existing studies that have applied these advanced approaches in archaeology, with a specific focus on digital preservation and object detection. RS standalone approaches including range-based and image-based modelling (e.g., laser scanning and SfM photogrammetry) have several disadvantages in terms of spatial resolution, penetrations, textures, colours, and accuracy. These limitations have led some archaeological studies to fuse/integrate multip

... Show More
View Publication
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Behavior of Reinforced Concrete Deep Beams Strengthened with Carbon Fiber Reinforced Polymer Strips
...Show More Authors

This research is concerned to investigate the behavior of reinforced concrete (RC) deep beams strengthened with carbon fiber reinforced polymer (CFRP) strips. The experimental part of this research is carried out by testing seven RC deep beams having the same dimensions and steel reinforcement which have been divided into two groups according to the strengthening schemes. Group one was consisted of three deep beams strengthened with vertical U-wrapped CFRP strips. While, Group two was consisted of three deep beams strengthened with inclined CFRP strips oriented by 45o with the longitudinal axis of the beam. The remaining beam is kept unstrengthening as a reference beam. For each group, the variable considered

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
Diagnosis of Malaria Infected Blood Cell Digital Images using Deep Convolutional Neural Networks
...Show More Authors

     Automated medical diagnosis is an important topic, especially in detection and classification of diseases. Malaria is one of the most widespread diseases, with more than 200 million cases, according to the 2016 WHO report. Malaria is usually diagnosed using thin and thick blood smears under a microscope. However, proper diagnosis is difficult, especially in poor countries where the disease is most widespread. Therefore, automatic diagnostics helps in identifying the disease through images of red blood cells, with the use of machine learning techniques and digital image processing. This paper presents an accurate model using a Deep Convolutional Neural Network build from scratch. The paper also proposed three CNN

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (6)
Scopus Crossref
Publication Date
Fri Oct 14 2022
Journal Name
المجلة العراقية لعلوم التربة
REVIEW: USING MACHINE VISION AND DEEP LEARINING IN AUTOMATED SORTING OF LOCAL LEMONS
...Show More Authors

Sorting and grading agricultural crops using manual sorting is a cumbersome and arduous process, in addition to the high costs and increased labor, as well as the low quality of sorting and grading compared to automatic sorting. the importance of deep learning, which includes the artificial neural network in prediction, also shows the importance of automated sorting in terms of efficiency, quality, and accuracy of sorting and grading. artificial neural network in predicting values and choosing what is good and suitable for agricultural crops, especially local lemons.

Publication Date
Tue Aug 10 2021
Journal Name
Design Engineering
Lossy Image Compression Using Hybrid Deep Learning Autoencoder Based On kmean Clusteri
...Show More Authors

Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye

... Show More