Abstract— The growing use of digital technologies across various sectors and daily activities has made handwriting recognition a popular research topic. Despite the continued relevance of handwriting, people still require the conversion of handwritten copies into digital versions that can be stored and shared digitally. Handwriting recognition involves the computer's strength to identify and understand legible handwriting input data from various sources, including document, photo-graphs and others. Handwriting recognition pose a complexity challenge due to the diversity in handwriting styles among different individuals especially in real time applications. In this paper, an automatic system was designed to handwriting recognition using the recent artificial intelligent algorithms, the conventional neural network (CNN). Different CNN models were tested and modified to produce a system has two important features high performance accuracy and less testing time. These features are the most important factors for real time applications. The experimental results were conducted on a dataset includes over 400,000 handwritten names; the best performance accuracy results were 99.8% for SqueezeNet model.
Faces blurring is one of the important complex processes that is considered one of the advanced computer vision fields. The face blurring processes generally have two main steps to be done. The first step has detected the faces that appear in the frames while the second step is tracking the detected faces which based on the information extracted during the detection step. In the proposed method, an image is captured by the camera in real time, then the Viola Jones algorithm used for the purpose of detecting multiple faces in the captured image and for the purpose of reducing the time consumed to handle the entire captured image, the image background is removed and only the motion areas are processe
... Show MoreResearchers are increasingly using multimodal biometrics to strengthen the security of biometric applications. In this study, a strong multimodal human identification model was developed to address the growing problem of spoofing attacks in biometric security systems. Through the use of metaheuristic optimization methods, such as the Genetic Algorithm(GA), Ant Colony Optimization(ACO), and Particle Swarm Optimization (PSO) for feature selection, this unique model incorporates three biometric modalities: face, iris, and fingerprint. Image pre-processing, feature extraction, critical image feature selection, and multibiometric recognition are the four main steps in the workflow of the system. To determine its performance, the model wa
... Show MorePattern matching algorithms are usually used as detecting process in intrusion detection system. The efficiency of these algorithms is affected by the performance of the intrusion detection system which reflects the requirement of a new investigation in this field. Four matching algorithms and a combined of two algorithms, for intrusion detection system based on new DNA encoding, are applied for evaluation of their achievements. These algorithms are Brute-force algorithm, Boyer-Moore algorithm, Horspool algorithm, Knuth-Morris-Pratt algorithm, and the combined of Boyer-Moore algorithm and Knuth–Morris– Pratt algorithm. The performance of the proposed approach is calculated based on the executed time, where these algorithms are applied o
... Show MoreThe accounting information that is produced by any System a user either entering or leaving, since the needs of the users began to evolve where he became the information provided by the current reporting system that does not meet their requirements in terms of users began to demand information, more quickly, and as a result of the needs of the user accounting system and the development of information and communications technology has emerged a new system (real- time reporting system), which has the ability to produce information at the moment of data gathered, it is no longer dependent on local circumstance, but this case has become a global response where the computer has become a cornerstone of the culture of the communi
... Show MoreSurface electromyography (sEMG) and accelerometer (Acc) signals play crucial roles in controlling prosthetic and upper limb orthotic devices, as well as in assessing electrical muscle activity for various biomedical engineering and rehabilitation applications. In this study, an advanced discrimination system is proposed for the identification of seven distinct shoulder girdle motions, aimed at improving prosthesis control. Feature extraction from Time-Dependent Power Spectrum Descriptors (TDPSD) is employed to enhance motion recognition. Subsequently, the Spectral Regression (SR) method is utilized to reduce the dimensionality of the extracted features. A comparative analysis is conducted between the Linear Discriminant Analysis (LDA) class
... Show More<p>Combating the COVID-19 epidemic has emerged as one of the most promising healthcare the world's challenges have ever seen. COVID-19 cases must be accurately and quickly diagnosed to receive proper medical treatment and limit the pandemic. Imaging approaches for chest radiography have been proven in order to be more successful in detecting coronavirus than the (RT-PCR) approach. Transfer knowledge is more suited to categorize patterns in medical pictures since the number of available medical images is limited. This paper illustrates a convolutional neural network (CNN) and recurrent neural network (RNN) hybrid architecture for the diagnosis of COVID-19 from chest X-rays. The deep transfer methods used were VGG19, DenseNet121
... Show MoreIn this study, from a total of 856 mastitis cases in lactating ewes, only 34 Streptococcus agalactiae isolates showed various types of resistance to three types of antibiotics (Penicillin, Erythromycin and Tetracycline). St. agalactiae isolates were identified according to the standard methods, including a new suggested technique called specific Chromogenic agar. It was found that antibiotic bacterial resistance was clearly identified by using MIC-microplate assay (dilution method). Also, by real-time PCR technique, it was determined that there were three antibiotics genes resistance ( pbp2b, tetO and mefA ). The high percentage of isolate carried of a single gene which was the Tetracycline (20.59%) followed by percentage Penicillin was
... Show MoreABSTRACT— In primary teeth, root canal treatment is a time consuming and challenging procedure, particularly during the most important step in endodontic treatment which is the preparation of the canal. Pulpectomy is the treatment of choice in all the necrotic primary teeth. For better treatment protocol, advancing technology brought the rotary system to reduce the manual dexterity and improve the quality of treatment for pulpectomy. This study aimed to compare and assess the efficacy of cleaning and the time required for the instrumentation during the preparation of root canals of the primary molars using the rotary and the manual (conventional) systems. Thirty root canals of primary teeth were selected. These teeth submitted to a
... Show MoreIn this paper, two new simple, fast and efficient block matching algorithms are introduced, both methods begins blocks matching process from the image center block and moves across the blocks toward image boundaries. With each block, its motion vector is initialized using linear prediction that depending on the motion vectors of its neighbor blocks that are already scanned and their motion vectors are assessed. Also, a hybrid mechanism is introduced, it depends on mixing the proposed two predictive mechanisms with Exhaustive Search (ES) mechanism in order to gain matching accuracy near or similar to ES but with Search Time ST less than 80% of the ES. Also, it offers more control capability to reduce the search errors. The experimental tests
... Show More