Abstract— The growing use of digital technologies across various sectors and daily activities has made handwriting recognition a popular research topic. Despite the continued relevance of handwriting, people still require the conversion of handwritten copies into digital versions that can be stored and shared digitally. Handwriting recognition involves the computer's strength to identify and understand legible handwriting input data from various sources, including document, photo-graphs and others. Handwriting recognition pose a complexity challenge due to the diversity in handwriting styles among different individuals especially in real time applications. In this paper, an automatic system was designed to handwriting recognition using the recent artificial intelligent algorithms, the conventional neural network (CNN). Different CNN models were tested and modified to produce a system has two important features high performance accuracy and less testing time. These features are the most important factors for real time applications. The experimental results were conducted on a dataset includes over 400,000 handwritten names; the best performance accuracy results were 99.8% for SqueezeNet model.
This work aims to analyze a three-dimensional discrete-time biological system, a prey-predator model with a constant harvesting amount. The stage structure lies in the predator species. This analysis is done by finding all possible equilibria and investigating their stability. In order to get an optimal harvesting strategy, we suppose that harvesting is to be a non-constant rate. Finally, numerical simulations are given to confirm the outcome of mathematical analysis.
As they are the smallest functional parts of the muscle, motor units (MUs) are considered as the basic building blocks of the neuromuscular system. Monitoring MU recruitment, de-recruitment, and firing rate (by either invasive or surface techniques) leads to the understanding of motor control strategies and of their pathological alterations. EMG signal decomposition is the process of identification and classification of individual motor unit action potentials (MUAPs) in the interference pattern detected with either intramuscular or surface electrodes. Signal processing techniques were used in EMG signal decomposition to understand fundamental and physiological issues. Many techniques have been developed to decompose intramuscularly detec
... Show MoreTime affects all elements of the intellectual scene or the theatrical scene. It came along with the theatrical doctrines according to the conditions of those doctrines and their conceptual ideas or the method of their mechanisms in the application. While it is classically or realistically integrated, we see it in the expressionist doctrine inconsistent and its inconsistency makes it responsive for the deconstruction strategy. Hence the researcher entitled his study (deconstruction the theatrical time in the expressionist doctrine) so that deconstruction would be a field for his study. The study starts with an introduction presenting the research problem, importance and objective. The theoretical framework consisted of three s
... Show MoreArtificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and
... Show MoreKey-frame selection plays an important role in facial expression recognition systems. It helps in selecting the most representative frames that capture the different poses of the face. The effect of the number of selected keyframes has been studied in this paper to find its impact on the final accuracy of the emotion recognition system. Dynamic and static information is employed to select the most effective key-frames of the facial video with a short response time. Firstly, the absolute difference between the successive frames is used to reduce the number of frames and select the candidate ones which then contribute to the clustering process. The static-based information of the reduced sets of frames is then given to the fuzzy C-Means algor
... Show MoreIn light of the development in computer science and modern technologies, the impersonation crime rate has increased. Consequently, face recognition technology and biometric systems have been employed for security purposes in a variety of applications including human-computer interaction, surveillance systems, etc. Building an advanced sophisticated model to tackle impersonation-related crimes is essential. This study proposes classification Machine Learning (ML) and Deep Learning (DL) models, utilizing Viola-Jones, Linear Discriminant Analysis (LDA), Mutual Information (MI), and Analysis of Variance (ANOVA) techniques. The two proposed facial classification systems are J48 with LDA feature extraction method as input, and a one-dimen
... Show MoreThe Islamic Bank of Al-Nahrain offers a formula for financing the purchase of real estate through a deferred sale contract, through Murabaha to the order to buy, and the payment of the price is in the form of instalments that include (the purchase price of the profit and the mutual agreement on the real estate). This research aims to show the reflection of real estate murabaha on the bank's investments, by measuring the effect of real estate murabaha on the profits achieved by the Islamic Bank of Al-Nahrain Bank. The growth of 'real estate murabaha' realized from the 'amounts granted by Bank X, in addition to analyzing the financial ratios of profitability indicators, including (return on deposits Y2) and for the years (2016 - 20
... Show More