Abstract— The growing use of digital technologies across various sectors and daily activities has made handwriting recognition a popular research topic. Despite the continued relevance of handwriting, people still require the conversion of handwritten copies into digital versions that can be stored and shared digitally. Handwriting recognition involves the computer's strength to identify and understand legible handwriting input data from various sources, including document, photo-graphs and others. Handwriting recognition pose a complexity challenge due to the diversity in handwriting styles among different individuals especially in real time applications. In this paper, an automatic system was designed to handwriting recognition using the recent artificial intelligent algorithms, the conventional neural network (CNN). Different CNN models were tested and modified to produce a system has two important features high performance accuracy and less testing time. These features are the most important factors for real time applications. The experimental results were conducted on a dataset includes over 400,000 handwritten names; the best performance accuracy results were 99.8% for SqueezeNet model.
Nanosilica was extracted from rice husk, which was locally collected from the Iraqi mill at Al-Mishikhab district in Najaf Governorate, Iraq. The precipitation method was used to prepared Nanosilica powder from rice husk ash, after treating it thermally at 700°C, followed by dissolving the silica in the alkaline solution and getting a sodium silicate solution. Two samples of the final solution were collected to study the effect of filtration on the purity of the sample by X-ray fluorescence spectrometry (XRF). The result shows that the filtered samples have purity above while the non-filtered sample purity was around The structure analysis investigated by the X-ray diffraction (XRD), found that the Nanosilica powder has an amorphous
... Show MoreThe most popular medium that being used by people on the internet nowadays is video streaming. Nevertheless, streaming a video consumes much of the internet traffics. The massive quantity of internet usage goes for video streaming that disburses nearly 70% of the internet. Some constraints of interactive media might be detached; such as augmented bandwidth usage and lateness. The need for real-time transmission of video streaming while live leads to employing of Fog computing technologies which is an intermediary layer between the cloud and end user. The latter technology has been introduced to alleviate those problems by providing high real-time response and computational resources near to the
... Show MoreSentiment Analysis is a research field that studies human opinion, sentiment, evaluation, and emotions towards entities such as products, services, organizations, events, topics, and their attributes. It is also a task of natural language processing. However, sentiment analysis research has mainly been carried out for the English language. Although the Arabic language is one of the most used languages on the Internet, only a few studies have focused on Arabic language sentiment analysis.
In this paper, a review of the most important research works in the field of Arabic text sentiment analysis using deep learning algorithms is presented. This review illustrates the main steps used in these studies, which include
... Show MoreOrthogonal polynomials and their moments have significant role in image processing and computer vision field. One of the polynomials is discrete Hahn polynomials (DHaPs), which are used for compression, and feature extraction. However, when the moment order becomes high, they suffer from numerical instability. This paper proposes a fast approach for computing the high orders DHaPs. This work takes advantage of the multithread for the calculation of Hahn polynomials coefficients. To take advantage of the available processing capabilities, independent calculations are divided among threads. The research provides a distribution method to achieve a more balanced processing burden among the threads. The proposed methods are tested for va
... Show MoreWhen images are customized to identify changes that have occurred using techniques such as spectral signature, which can be used to extract features, they can be of great value. In this paper, it was proposed to use the spectral signature to extract information from satellite images and then classify them into four categories. Here it is based on a set of data from the Kaggle satellite imagery website that represents different categories such as clouds, deserts, water, and green areas. After preprocessing these images, the data is transformed into a spectral signature using the Fast Fourier Transform (FFT) algorithm. Then the data of each image is reduced by selecting the top 20 features and transforming them from a two-dimensiona
... Show MoreThe removal of Ibuprofen antibiotics (IBU) by photo-degradation UV/H2O2/Fe+2 system was investigated in a batch reactor under different initial concentrations of H2O2 (100-500) mg/L, Fe+2 (10-40) mg/L, pH (3-9) and initial concentrations of IBU (10-80) mg/L, and their relationship with the degradation efficiency were studied. The result demonstrated that the maximum elimination of IBU was 85.54% achieved at 300 mg/L of H2O2, 30 mg/L of Fe+2, pH=3, and irradiation time of 150 min, for 10 mg/L of IBU. The results have shown that the oxidation reagent H2O2 plays a very important role in IBU degradation.
Over the last period, social media achieved a widespread use worldwide where the statistics indicate that more than three billion people are on social media, leading to large quantities of data online. To analyze these large quantities of data, a special classification method known as sentiment analysis, is used. This paper presents a new sentiment analysis system based on machine learning techniques, which aims to create a process to extract the polarity from social media texts. By using machine learning techniques, sentiment analysis achieved a great success around the world. This paper investigates this topic and proposes a sentiment analysis system built on Bayesian Rough Decision Tree (BRDT) algorithm. The experimental results show
... Show MoreFractal image compression depends on representing an image using affine transformations. The main concern for researches in the discipline of fractal image compression (FIC) algorithm is to decrease encoding time needed to compress image data. The basic technique is that each portion of the image is similar to other portions of the same image. In this process, there are many models that were developed. The presence of fractals was initially noticed and handled using Iterated Function System (IFS); that is used for encoding images. In this paper, a review of fractal image compression is discussed with its variants along with other techniques. A summarized review of contributions is achieved to determine the fulfillment of fractal image co
... Show More