Abstract— The growing use of digital technologies across various sectors and daily activities has made handwriting recognition a popular research topic. Despite the continued relevance of handwriting, people still require the conversion of handwritten copies into digital versions that can be stored and shared digitally. Handwriting recognition involves the computer's strength to identify and understand legible handwriting input data from various sources, including document, photo-graphs and others. Handwriting recognition pose a complexity challenge due to the diversity in handwriting styles among different individuals especially in real time applications. In this paper, an automatic system was designed to handwriting recognition using the recent artificial intelligent algorithms, the conventional neural network (CNN). Different CNN models were tested and modified to produce a system has two important features high performance accuracy and less testing time. These features are the most important factors for real time applications. The experimental results were conducted on a dataset includes over 400,000 handwritten names; the best performance accuracy results were 99.8% for SqueezeNet model.
Face Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multilayer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a
... Show MoreAspect-Oriented Software Development (AOSD) is a technology that helps achieving
better Separation of Concern (SOC) by providing mechanisms to identify all relevant points
in a program at which aspectual adaptations need to take place. This paper introduces a
banking application using of AOSD with security concern in information hiding.
In this work, animal bones with different shapes and sizes were used to study the characteristics of the ground penetrating Radar system wares reflected by these bones. These bones were buried underground in different depths and surrounding media. The resulting data showed that the detection of buried bones with the GPR technology is highly dependent upon the surrounding media that the bones were buried in. Humidity is the main source of signal loss in such application because humidity results in low signal-to-noise ratio which leads to inability to distinguish between the signal reflected by bones from that reflected by the dopes in the media such as rock .
Fraud Includes acts involving the exercise of deception by multiple parties inside and outside companies in order to obtain economic benefits against the harm to those companies, as they are to commit fraud upon the availability of three factors which represented by the existence of opportunities, motivation, and rationalization. Fraud detecting require necessity of indications the possibility of its existence. Here, Benford’s law can play an important role in direct the light towards the possibility of the existence of financial fraud in the accounting records of the company, which provides the required effort and time for detect fraud and prevent it.
In this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, wi
... Show MoreIn this paper, the developed sprite allocation method is designed to be coherent with the introduced block-matching method in order to minimize the allocation process time for digital video. The accomplished allocation process of sprite region consists of three main steps. The first step is the detection of sprite area; where the sequence of frames belong to Group of Video sequence are analysed to detect the sprite regions which survive for long time, and to determine the sprite type (i.e., whether it is static or dynamic). Then as a second step, the flagged survived areas are passed through the gaps/islands removal stage to enhance the detected sprite areas using post-processing operations. The third step is partitioning the sprite area in
... Show MoreThis work addressed the assignment problem (AP) based on fuzzy costs, where the objective, in this study, is to minimize the cost. A triangular, or trapezoidal, fuzzy numbers were assigned for each fuzzy cost. In addition, the assignment models were applied on linguistic variables which were initially converted to quantitative fuzzy data by using the Yager’sorankingi method. The paper results have showed that the quantitative date have a considerable effect when considered in fuzzy-mathematic models.
Association rules mining (ARM) is a fundamental and widely used data mining technique to achieve useful information about data. The traditional ARM algorithms are degrading computation efficiency by mining too many association rules which are not appropriate for a given user. Recent research in (ARM) is investigating the use of metaheuristic algorithms which are looking for only a subset of high-quality rules. In this paper, a modified discrete cuckoo search algorithm for association rules mining DCS-ARM is proposed for this purpose. The effectiveness of our algorithm is tested against a set of well-known transactional databases. Results indicate that the proposed algorithm outperforms the existing metaheuristic methods.
Social Networking has dominated the whole world by providing a platform of information dissemination. Usually people share information without knowing its truthfulness. Nowadays Social Networks are used for gaining influence in many fields like in elections, advertisements etc. It is not surprising that social media has become a weapon for manipulating sentiments by spreading disinformation. Propaganda is one of the systematic and deliberate attempts used for influencing people for the political, religious gains. In this research paper, efforts were made to classify Propagandist text from Non-Propagandist text using supervised machine learning algorithms. Data was collected from the news sources from July 2018-August 2018. After annota
... Show MoreAbstract
Most of the industrial organization in the world became suffering from the problem of the pollution of the poisonous chemicals things, this urged to depend on the principle of the responsible production, because it has the positive role by dealing with these chemical things and to safe the health of the society, due to the main goal of this study is to restrict the role responsible production in accomplishing the system of the environmental management through an actual study in the northern gas company in Kirkuk province, the topic has acquired a big importance bacause there were a limited number of studies and res
... Show More