Abstract— The growing use of digital technologies across various sectors and daily activities has made handwriting recognition a popular research topic. Despite the continued relevance of handwriting, people still require the conversion of handwritten copies into digital versions that can be stored and shared digitally. Handwriting recognition involves the computer's strength to identify and understand legible handwriting input data from various sources, including document, photo-graphs and others. Handwriting recognition pose a complexity challenge due to the diversity in handwriting styles among different individuals especially in real time applications. In this paper, an automatic system was designed to handwriting recognition using the recent artificial intelligent algorithms, the conventional neural network (CNN). Different CNN models were tested and modified to produce a system has two important features high performance accuracy and less testing time. These features are the most important factors for real time applications. The experimental results were conducted on a dataset includes over 400,000 handwritten names; the best performance accuracy results were 99.8% for SqueezeNet model.
Due to the availability of technology stemming from in-depth research in this sector and the drawbacks of other identifying methods, biometrics has drawn maximum attention and established itself as the most reliable alternative for recognition in recent years. Efforts are still being made to develop a user-friendly system that is up to par with security-system requirements and yields more reliable outcomes while safeguarding assets and ensuring privacy. Human age estimation and Gender identification are both challenging endeavours. Biomarkers and methods for determining biological age and gender have been extensively researched, and each has advantages and disadvantages. Facial-image-based positioning is crucial for many application
... Show MoreHemorrhoids are one of the most common surgical conditions. The hemorrhoid may cause symptoms that are: bleeding, pain, prolapse, itching, spoilage of feces, and psychologic discomfort. There are many methods for treatment of hemorrhoid like, medical therapy, rubber band ligation, electerocoagulation, stapled hemorrhoidpexy, photocoagulation, sclerothereapy, doppler guided artery ligation, Cryosurgery, and surgery. All methods for treatment of hemorrhoids have advantages, disadvantages, and limitations. Conventional haemorrhoidectomy was the traditional operation for the treatment of hemorrhoids. But recently other modalities of treatment had been used as an alternative operations including CO2 laser haemorrhoidectomy. This work aims to
... Show MoreThis paper adapted the neural network for the estimating of the direction of arrival (DOA). It uses an unsupervised adaptive neural network with GHA algorithm to extract the principal components that in turn, are used by Capon method to estimate the DOA, where by the PCA neural network we take signal subspace only and use it in Capon (i.e. we will ignore the noise subspace, and take the signal subspace only).
A LiF (TLD-700) PTFED disc has adiameter of (13mm) and thickness of (0.4mm) for study the response and sensetivity of this material for gamma and beta rays by using (TOLEDO) system from pitman company. In order to calibrate the system and studying the calibration factor. Discs were irradiated for Gamma and Beta rays and comparing with the theoretical doses. The exposure range is between 15×10-2 mGy to 1000×10-2 mGy. These doses are within the range of normal radiation field for workers.
In Automatic Speech Recognition (ASR) the non-linear data projection provided by a one hidden layer Multilayer Perceptron (MLP), trained to recognize phonemes, and has previous experiments to provide feature enhancement substantially increased ASR performance, especially in noise. Previous attempts to apply an analogous approach to speaker identification have not succeeded in improving performance, except by combining MLP processed features with other features. We present test results for the TIMIT database which show that the advantage of MLP preprocessing for open set speaker identification increases with the number of speakers used to train the MLP and that improved identification is obtained as this number increases beyond sixty.
... Show MoreSteganography is a mean of hiding information within a more obvious form of
communication. It exploits the use of host data to hide a piece of information in such a way
that it is imperceptible to human observer. The major goals of effective Steganography are
High Embedding Capacity, Imperceptibility and Robustness. This paper introduces a scheme
for hiding secret images that could be as much as 25% of the host image data. The proposed
algorithm uses orthogonal discrete cosine transform for host image. A scaling factor (a) in
frequency domain controls the quality of the stego images. Experimented results of secret
image recovery after applying JPEG coding to the stego-images are included.
Data hiding is the process of encoding extra information in an image by making small modification to its pixels. To be practical, the hidden data must be perceptually invisible yet robust to common signal processing operations. This paper introduces a scheme for hiding a signature image that could be as much as 25% of the host image data and hence could be used both in digital watermarking as well as image/data hiding. The proposed algorithm uses orthogonal discrete wavelet transforms with two zero moments and with improved time localization called discrete slantlet transform for both host and signature image. A scaling factor ? in frequency domain control the quality of the watermarked images. Experimental results of signature image
... Show Morein this paper we adopted ways for detecting edges locally classical prewitt operators and modification it are adopted to perform the edge detection and comparing then with sobel opreators the study shows that using a prewitt opreators