Abstract— The growing use of digital technologies across various sectors and daily activities has made handwriting recognition a popular research topic. Despite the continued relevance of handwriting, people still require the conversion of handwritten copies into digital versions that can be stored and shared digitally. Handwriting recognition involves the computer's strength to identify and understand legible handwriting input data from various sources, including document, photo-graphs and others. Handwriting recognition pose a complexity challenge due to the diversity in handwriting styles among different individuals especially in real time applications. In this paper, an automatic system was designed to handwriting recognition using the recent artificial intelligent algorithms, the conventional neural network (CNN). Different CNN models were tested and modified to produce a system has two important features high performance accuracy and less testing time. These features are the most important factors for real time applications. The experimental results were conducted on a dataset includes over 400,000 handwritten names; the best performance accuracy results were 99.8% for SqueezeNet model.
To finalize any construction investment project, it would be necessary to identify the most significant problems and obstacles that lead to project reluctance and stalling. Unexpected events and conflicts may have disrupted these strategies and impacted project development. Due to the high initial investment costs of construction projects, crises can have an immediate impact, resulting in significant financial losses. The 2014 financial crisis was one of the most prominent crises that Iraq faced, which prompted the researcher to identify and evaluate those obstacles through this research and questionnaires using Pareto scientific theory to exclude factors that do not contribute to project lag. It was discovered that 28 o
... Show MoreThis paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm n
... Show MoreIn Production and Operations Management the specialists have tried to develop a strategy to counter the risks arising from the activities of the organization and of waste of various types and therefore the risk management in the contemporary framework represents a phenomenon of new quality, and can not be this phenomenon to take practical dimensions, but the development of culture of the organization towards the risks and deal with all aspects and paint ways to address them within an integrated program, and requires new skills and systems provide accurate information capable of coordination between the various parties within the organization.
The research aims to develop a blu
... Show MorePasses the Arab order moment political precision of disruption and discord and
differences of countless between its components and its parts because of the suffering he
endured and the suffering now from internal disturbances as a result of lack of cohesion
relations intra-and cultural, historical and lack of interaction between these components so
that became the focus of the policies and interests is an unprecedented degree , reduced with
the joint Arab action to the minimum, and began to focus on the interests of special
regulations.
This is with regard suffering internally, but externally the regime Arab Regional is absent the
biggest influence on international decisions because of the courtesies which were ca
This paper describes the application of consensus optimization for Wireless Sensor Network (WSN) system. Consensus algorithm is usually conducted within a certain number of iterations for a given graph topology. Nevertheless, the best Number of Iterations (NOI) to reach consensus is varied in accordance with any change in number of nodes or other parameters of . graph topology. As a result, a time consuming trial and error procedure will necessary be applied
to obtain best NOI. The implementation of an intellig ent optimization can effectively help to get the optimal NOI. The performance of the consensus algorithm has considerably been improved by the inclusion of Particle Swarm Optimization (PSO). As a case s
MPEG-DASH is an adaptive bitrate streaming technology that divides video content into small HTTP-objects file segments with different bitrates. With live UHD video streaming latency is the most important problem. In this paper, creating a low-delay streaming system using HTTP 2.0. Based on the network condition the proposed system adaptively determine the bitrate of segments. The video is coded using a layered H.265/HEVC compression standard, then is tested to investigate the relationship between video quality and bitrate for various HEVC parameters and video motion at each layer/resolution. The system architecture includes encoder/decoder configurations and how to embedded the adaptive video streaming. The encoder includes compression besi
... Show More74 fanners were randomily selected from the Lc:ital. of 406 fanners using the Modern Irrigation System up to November , 2000 , for the purpose of wide adoptation of such system. Rcsults indicated according to the data which has been obtained and statistically analysed by the statistical package for the Social Sciences (SPSS) program showed that the majority of the farmers adopted this new system of irrigation due to the increase in the yield up to 5" .