The main goal of this paper is to introduce the higher derivatives multivalent harmonic function class, which is defined by the general linear operator. As a result, geometric properties such as coefficient estimation, convex combination, extreme point, distortion theorem and convolution property are obtained. Finally, we show that this class is invariant under the Bernandi-Libera-Livingston integral for harmonic functions.
This work presents mainly the buckling load of sandwich plates with or without crack for different cases. The buckling loads are analyzed experimentally and numerically by using ANSYS 15. The experimental investigation was to fabricate the cracked sandwich plate from stainless steel and PVC to find mechanical properties of stainless steel and PVC such as young modulus. The buckling load for different aspect ratio, crack length, cracked location and plate without crack found. The experimental results were compared with that found from ANSYS program. Present of crack is decreased the buckling load and that depends on crack size, crack location and aspect ratio.
New speaker identification test’s feature, extracted from the differentiated form of the wave file, is presented. Differentiation operation is performed by an operator similar to the Laplacian operator. From the differentiated record’s, two parametric measures have been extracted and used as identifiers for the speaker; i.e. mean-value and number of zero-crossing points.
In this paper, the process for finding an approximate solution of nonlinear three-dimensional (3D) Volterra type integral operator equation (N3D-VIOE) in R3 is introduced. The modelling of the majorant function (MF) with the modified Newton method (MNM) is employed to convert N3D-VIOE to the linear 3D Volterra type integral operator equation (L3D-VIOE). The method of trapezoidal rule (TR) and collocation points are utilized to determine the approximate solution of L3D-VIOE by dealing with the linear form of the algebraic system. The existence of the approximate solution and its uniqueness are proved, and illustrative examples are provided to show the accuracy and efficiency of the model.
Mathematical Subject Classificat
... Show MoreNecessary and sufficient conditions for the operator equation I AXAX n*, to have a real positive definite solution X are given. Based on these conditions, some properties of the operator A as well as relation between the solutions X andAare given.
The current research deals with practical studies that explain to the Iraqi consumer multiple instances about the phenomenon of water hammer which occur in the water pipeline operating with pressure. It concern a practical study of the characteristics of this phenomenon and economically harmful to the consumer the same time. Multiple pipe fittings are used aimed to reduce this phenomenon and its work as alternatives to the manufactured arresters that used to avoid water hammer in the sanitary installations, while the consumer did not have any knowledge as to the non-traded for many reasons, including the water pressure decreases in the networks and the use of consumer pumps to draw water directly from the network. Study found a numbe
... Show MoreThe current research deals with practical studies that explain to the Iraqi consumer multiple instances about the phenomenon of water hammer which occur in the water pipeline operating with pressure. It concern a practical study of the characteristics of this phenomenon and economically harmful to the consumer the same time. Multiple pipe fittings are used aimed to reduce this phenomenon and its work as alternatives to the manufactured arresters that used to avoid water hammer in the sanitary installations, while the consumer did not have any knowledge as to the non-traded for many reasons, including the water pressure decreases in the networks and the use of consumer pumps to draw water directly from the network. Study found a number of
... Show More