Diyala river is the most important tributaries in Iraq, this river suffering from pollution, therefore, this research aimed to predict organic pollutants that represented by biological oxygen demand BOD, and inorganic pollutants that represented by total dissolved solids TDS for Diyala river in Iraq, the data used in this research were collected for the period from 2011-2016 for the last station in the river known as D17, before the river meeting Tigris river in Baghdad city. Analysis Neural Network ANN was used in order to find the mathematical models, the parameters used to predict BOD were seven parameters EC, Alk, Cl, K, TH, NO3, DO, after removing the less importance parameters. While the parameters that used to predict TDS were fourteen parameters pH, DO, BOD, PO4, NO3,Ca, Mg, TH, K, Na, SO4,Cl, EC, Alk. The results indicated that the best correlation coefficient is 86.5% for BOD, and the most important parameter is Chloride Cl, and the best correlation coefficient is 95.4% for TDS and the most important parameters are total hardness TH and electrical conductivity EC, according to direct relation between these parameters and TDS.
Tin Selenide (SnSe) Nano crystalline thin films of thickness 400±20 nm were deposited on glass substrate by thermal evaporation technique at R.T under a vacuum of ∼ 2 × 10− 5 mbar to study the effect of annealing temperatures (as-deposited, 100, 150 and 200) °C on its structural, surface morphology and optical properties. The films structure was characterized using X-ray diffraction (XRD) which showed that all the films have polycrystalline in nature and orthorhombic structure, with the preferred orientation along the (111) plane. These films was synthesized of very fine crystallites size of (14.8-24.5) nm, the effect of annealing temperatures on the cell parameters, crystallite size and dislocation density were observed.
... Show MoreBiomass is a popular renewable carbon source because it has a lot of potential as a substitute for scarce fossil fuels and has been used to make essential compounds like 5-hydroxymethylfurfural (HMF). One of the main components of biomass, glucose, has been extensively studied as a precursor for the production of HMF. Several efforts have been made to find efficient and repeatable procedures for the synthesis of HMF, a chemical platform used in the manufacturing of fuels and other high-value compounds. Sulfonated graphite (SG) was produced from spent dry batteries and utilized as a catalyst to convert glucose to 5-hydroxymethylfurfural (HMF). Temperature, reaction time, and catalyst loading were the variables studied. When dimethyl sulfo
... Show MoreParasitic diseases can affect infection with COVID-19 obviously, as protective agents, or by reducing severity of this viral infection. This current review mentions the common symptoms between human parasites and symptoms of COVID-19, and explains the mechanism actions of parasites, which may prevent or reduce severity of this viral infection. Pre-existing parasitic infections provide prohibition against pathogenicity of COVID-19, by altering the balance of gut microbiota that can vary the immune response to this virus infection.
A low-cost reverse flow plasma system powered by argon gas pumping was built using homemade materials in this paper. The length of the resulting arc change was directly proportional to the flow rate, while using the thermal camera to examine the thermal intensity distribution and demonstrating that it is concentrated in the centre, away from the walls at various flow rates, the resulting arc's spectra were also measured. The results show that as the gas flow rate increased, so did the ambient temperature. The results show that the medium containing the arc has a maximum temperature of 34.1 ˚C at a flow rate of 14 L/min and a minimum temperature of 22.6 ˚C at a flow rate of 6 L/min.
The presence of antibiotic residues such as ciprofloxacin (CIPR) in an aqueous environment is dangerous when their concentrations exceed the allowable. Therefore, eliminating these residues from the wastewater becomes an essential issue to prevent their harm. In this work, the potential of efficient adsorption of ciprofloxacin antibiotics was studied using eco-friendly ZSM-5 nanocrystals‑carbon composite (NZC). An inexpensive effective natural binder made of the sucrose-citric acid mixture was used for preparing NZC. The characterization methods revealed the successful preparation of NZC with a favorable surface area of 103.739 m2/g, and unique morphology and functional groups. Investigating the ability of NZC for adsorbing CIPR antibioti
... Show More