Hydrated lime has been recognized as an effective additive used to improve asphalt concrete properties in pavement applications. However, further work is still needed to quantify the effect of hydrated lime on asphaltic concrete performance under varied weather, temperature, and environmental conditions and in the application of different pavement courses. A research project was conducted using hydrated lime to modify the asphalt concretes used for the applications of wearing (surface), leveling (binder), and base courses. A previous publication reported the experimental study on the resistance to Marshall stability and the volumetric properties, the resilient modulus, and permanent deformation at three different weather temperatures. This paper reports the second phase of the experimental study for material durability, which investigated the effect of hydrated lime content on moisture susceptibility when exposed to a freeze-thaw cycle, and fatigue life. The experimental results showed an improvement in the durability of the modified asphalt concrete mixtures. Optimum hydrated lime contents for different course applications are suggested based on the series experimental studies. Finally, the advantage of using the optimum mixtures for a pavement application is demonstrated.
The current study deals with the performance of constructed wetland (CW) incorporating a microbial fuel cell (MFC) for wastewater treatment and electricity generation. The whole unit is referred to as CW-MFC. This technique involves two treatments; the first is an aerobic treatment which occurs in the upper layer of the system (cathode section) and the second is anaerobic biological treatment in the lower layer of the system (anode section). Two types of electrode material were tested; stainless steel and graphite. Three configurations for electrodes arrangement CW-MFC were used. In the first unit of CW-MFC, the anode was graphite plate (GPa) and cathode was also graphite plate (GPc), in the second CW-MFC unit, the anode was stainless st
... Show MoreUnderstanding energy metabolism and intracellular energy transmission requires knowledge of the function and structure of the mitochondria. Issues with mitochondrial morphology, structure, and function are the most prevalent symptoms. They can damage organs such as the heart, brain, and muscle due to a variety of factors, such as oxidative damage, incorrect metabolism of energy, or genetic conditions. The control of cell metabolism and physiology depends on functional connections between mitochondrial and biological surroundings. Therefore, it is essential to research mitochondria in situ or in vivo without isolating them from their surrounding biological environment. Finding and spotting abnormal alterations in mitochondria is the
... Show MoreThe concrete industry consumes millions of tons of aggregate comprising of natural sands and gravels, each year. In recent years there has been an increasing trend towards using recycled aggregate to save natural resources and to produce lightweight concrete. This study investigates the possibility of using waste plastic as one of the components of lead-acid batteries to replace the fine aggregate by 50 and 70% by volume of concrete masonry units. Compared to the reference concrete mix, results demonstrated that a reduction of approximately 32.5% to 39.6% in the density for replacement of 50% to 70% respectively. At 28 days curing age, the compressive strength was decreased while the water absorption increased by increas
... Show MoreIraqi insurance market need to develop products and to find new insurance policies to cover the damages of the violence and political commotions dangers and to meet the needs of the proposers.
The global insurance companies recently issued such policies to pay the losses wich caused by the violent political acts of vandalism suffered by the property and investments wich estimated billions of dollars.
... Show MoreStructural, optical, and electrical properties of thin films of CdS : Zn prepared by the solution – growth technique are reported as a function of zinc concentration. CdS are window layers influencing the photovoltaic response of CIS solar cells. The zinc doping concentration was varied from 0.05 to 0.5 wt %, zinc doping apparently increase the band gap and lowers the resistivity. All beneficial optical properties of chemically deposited CdS thin films for application as window material in heterojunction optoelectronic devices are retained. Heat treatment in air at 400 °C for 1h modify crystalline structure, optical, and electrical properties of solution growth deposited CdS : Zn films.
The mucilage from the seeds of Lallemantia royleana family Labiatae was extracted and subjected to preformulation study for evaluation of its suitability for use as suspending agent. Furosemide suspensions were prepared using (1.5% w/v) of the extracted Lallemantia royleana mucilage, (1.5% w/v) chitosan and (0.35% w/v) xanthan gum. The mucilage was white in color and the average yield of dried mucilage obtained from L.royleana nutlets was 14 % w/w of the seeds used. It is sparingly soluble in water but swells in contact with it, giving a highly viscous solution. It is slightly acidic to neutral. It was found that the extracted natural mucilage of Lallemantia royleana exhibited a higher viscosity profil
... Show MoreAggregate production planning (APP) is one of the most significant and complicated problems in production planning and aim to set overall production levels for each product category to meet fluctuating or uncertain demand in future. and to set decision concerning hiring, firing, overtime, subcontract, carrying inventory level. In this paper, we present a simulated annealing (SA) for multi-objective linear programming to solve APP. SA is considered to be a good tool for imprecise optimization problems. The proposed model minimizes total production and workforce costs. In this study, the proposed SA is compared with particle swarm optimization (PSO). The results show that the proposed SA is effective in reducing total production costs and req
... Show More