Abstract
The aim of the present work is to control of metal buried corrosion by alteration the media method. This method depended on the characteristics of each media. The corrosion rates in different media (soil, sand, porcelanite stone and gravel) for specimens of low carbon steel were measured by two methods weight loss method and polarization method, weight loss measured by buried specimens in these medias separately for 90 days. The polarization method includes preparing of specimen and salt solutions have electrical resistivity equivalent electrical resistivity of these media. The corrosion rate of two method results in (soil > sand> porcelainte stone> gravel). The lower corrosion rate happene
... Show MoreAbstract
The aim of this paper is to investigate and discuss the mechanisms of corrosion of epoxy coatings used for potable water tanks. Two distinct types of Jotun epoxy coatings: Tankguard 412 contained polyamine cured epoxy and Penguard HB contained polyamide cured epoxy, were tested and studied using the electrochemical impedance spectroscopic (EIS) method. The porosity of epoxy coatings was determined using EIS method. The obtained results showed that the two epoxy coatings have excellent behavior when applied and tested in potable water of Basrah city. Polyamine is more resistance to water corrosion compared to polyamide curing epoxy and has high impedance values. Microscopic inspection after te
... Show MoreHM Al-Dabbas, RA Azeez, AE Ali, IRAQI JOURNAL OF COMPUTERS, COMMUNICATIONS, CONTROL AND SYSTEMS ENGINEERING, 2023
The interests toward developing accurate automatic face emotion recognition methodologies are growing vastly, and it is still one of an ever growing research field in the region of computer vision, artificial intelligent and automation. However, there is a challenge to build an automated system which equals human ability to recognize facial emotion because of the lack of an effective facial feature descriptor and the difficulty of choosing proper classification method. In this paper, a geometric based feature vector has been proposed. For the classification purpose, three different types of classification methods are tested: statistical, artificial neural network (NN) and Support Vector Machine (SVM). A modified K-Means clustering algorithm
... Show MoreThe convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog
... Show MoreThe printed Arabic character recognition are faced numerous challenges due to its character body which are changed depending on its position in any sentence (at beginning or in the middle or in the end of the word). This paper portrays recognition strategies. These strategies depend on new pre-processing processes, extraction the structural and numerical features to build databases for printed alphabetical Arabic characters. The database information that obtained from features extracted was applied in recognition stage. Minimum Distance Classifier technique (MDC) was used to classify and train the classes of characters. The procedure of one character against all characters (OAA) was used in determination the rate
... Show MoreThe dependable and efficient identification of Qin seal script characters is pivotal in the discovery, preservation, and inheritance of the distinctive cultural values embodied by these artifacts. This paper uses image histograms of oriented gradients (HOG) features and an SVM model to discuss a character recognition model for identifying partial and blurred Qin seal script characters. The model achieves accurate recognition on a small, imbalanced dataset. Firstly, a dataset of Qin seal script image samples is established, and Gaussian filtering is employed to remove image noise. Subsequently, the gamma transformation algorithm adjusts the image brightness and enhances the contrast between font structures and image backgrounds. After a s
... Show More