The accumulation of sediment in reservoirs poses a major challenge that impacts the storage capacity, quality of water, and efficiency of hydroelectric power generation systems. Geospatial methods, including Geographic Information Systems (GIS) and Remote Sensing (RS), were used to assess Dukan Reservoir sediment quantities. Satellite and reservoir water level data from 2010 to 2022 were used for sedimentation assessment. The satellite data was used to analyze the water spread area, employing the Normalized Difference Water Index (NDWI) and Modified Normalized Difference Water Index (MNDWI) to enhance the water surface in the satellite imagery of Dukan Reservoir. The cone formula was employed to calculate the live storag
... Show MoreIn this theoretical paper and depending on the optimization synthesis method for electron magnetic lenses a theoretical computational investigation was carried out to calculate the Resolving Power for the symmetrical double pole piece magnetic lenses, under the absence of magnetic saturation, operated by the mode of telescopic operation by using symmetrical magnetic field for some analytical functions well-known in electron optics such as Glaser’s Bell-shaped model, Grivet-Lenz model, Gaussian field model and Hyperbolic tangent field model. This work can be extended further by using the same or other models for asymmetrical or symmetrical axial magnetic field
... Show MoreIn the last two decades, arid and semi-arid regions of China suffered rapid changes in the Land Use/Cover Change (LUCC) due to increasing demand on food, resulting from growing population. In the process of this study, we established the land use/cover classification in addition to remote sensing characteristics. This was done by analysis of the dynamics of (LUCC) in Zhengzhou area for the period 1988-2006. Interpretation of a laminar extraction technique was implied in the identification of typical attributes of land use/cover types. A prominent result of the study indicates a gradual development in urbanization giving a gradual reduction in crop field area, due to the progressive economy in Zhengzhou. The results also reflect degradati
... Show MoreIn this study the Fourier Transform Infrared Spectrophotometry (FTIR) provides a quick, efficient and relatively inexpensive method for identifying and quantifying gypsum concentrations in the samples taken from different sites from different localities from Alexandria district southwest Baghdad. A comprehensive spectroscopic study of gypsum-calcite system was reported to give good results for the first time by using IR for analytical grades of gypsum (CaSO4.2H2O) and calcite (CaCO3) pure crystals. The spectral results were used to create a calibration curve relates the two minerals concentrations to the intensity (peaks) of FTIR absorbance and applies this calibration to specify gypsum and calcite concentrations in Iraqi gypsiferous soi
... Show More
The research aims to identify the factors that affect the quality of the product by using the Failure Mode and Effect Analysis (FMEA) tool and to suggest measures to reduce the deviations or defects in the production process. I used the case study approach to reach its goals, and the air filter product line was chosen in the air filters factory of Al-Zawraa General Company. The research sample was due to the emergence of many defects of different impact and the continuing demand for the product. I collected data and information from the factory records for two years (2018-2019) and used a scheme Pareto Fishbone Diagram as well as an FMEA tool to analyze data and generate results.
Par
... Show MoreA problem of solid waste became in the present day common global problem among all countries, whether developing or developed countries, and can say that no country in the world today is immuning from this dilemma which must find appropriate solutions. The problem has reached a stage that can not ignore or delay, but has became a daily problem occupies the minds of ecologists, economists and politicians took occupies center front in the lists of priorities for the countries in terms of finding solutions to the rapid scientific and radical them. and that transport costs constitute an important component of total costs borne by the municipal districts in the process of disposal of solid waste, so any improvement in the
... Show MoreCodes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under de
... Show MoreRationale, aims and objectives: A review of studies published over the last six years gives update about this hot topic. In the middle of COVID-19 pandemic, this study findings can help understand how population may perceive vaccinations. The objectives of this study were to review the literature covering the perceptions about influenza vaccines and to determine factors influencing the acceptance of vaccination using Health Belief Model (HBM). Methods: A comprehensive literature search was performed utilizing PubMed and Google Scholar databases. Three keywords were used: Influenza vaccine, perceptions, and Middle East. Empirical studies that dealt with people/ HCW perceptions of influenza vaccine in the Middle East and writt
... Show MoreSupport vector machines (SVMs) are supervised learning models that analyze data for classification or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two classes. SVM has very good accuracy and extremally robust comparing with some other classification methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, working with large datasets can cause many problems such as time-consuming and inefficient results. In this paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the classification of different ca
... Show More