Building a system to identify individuals through their speech recording can find its application in diverse areas, such as telephone shopping, voice mail and security control. However, building such systems is a tricky task because of the vast range of differences in the human voice. Thus, selecting strong features becomes very crucial for the recognition system. Therefore, a speaker recognition system based on new spin-image descriptors (SISR) is proposed in this paper. In the proposed system, circular windows (spins) are extracted from the frequency domain of the spectrogram image of the sound, and then a run length matrix is built for each spin, to work as a base for feature extraction tasks. Five different descriptors are generated from the run length matrix within each spin and the final feature vector is then used to populate a deep belief network for classification purpose. The proposed SISR system is evaluated using the English language Speech Database for Speaker Recognition (ELSDSR) database. The experimental results were achieved with 96.46 accuracy; showing that the proposed SISR system outperforms those reported in the related current research work in terms of recognition accuracy.
In this paper, we investigate the automatic recognition of emotion in text. We perform experiments with a new method of classification based on the PPM character-based text compression scheme. These experiments involve both coarse-grained classification (whether a text is emotional or not) and also fine-grained classification such as recognising Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method significantly outperforms the traditional word-based text classification methods. The results show that the PPM compression based classification method is able to distinguish between emotional and nonemotional text with high accuracy, between texts invo
... Show MoreWater quality sensors have recently received a lot of attention due to their impact on human health. Due to their distinct features, environmental sensors are based on carbon quantum dots (CQDs). In this study, CQDs were prepared using the electro-chemical method, where the structural and optical properties were studied. These quantum dots were used in the environmental sensor application after mixing them with three different materials: CQDs, Alq3 polymer and CQDs and Alq3 solutions using two different methods: drop casting and spin coating, and depositing them on silicon. The sensitivity of the water pollutants was studied for each case of the prepared samples after measuring the change in resistance of the samples at a temperature of
... Show MoreThe basic solution to overcome difficult issues related to huge size of digital images is to recruited image compression techniques to reduce images size for efficient storage and fast transmission. In this paper, a new scheme of pixel base technique is proposed for grayscale image compression that implicitly utilize hybrid techniques of spatial modelling base technique of minimum residual along with transformed technique of Discrete Wavelet Transform (DWT) that also impels mixed between lossless and lossy techniques to ensure highly performance in terms of compression ratio and quality. The proposed technique has been applied on a set of standard test images and the results obtained are significantly encourage compared with Joint P
... Show MoreThis paper presents a combination of enhancement techniques for fingerprint images affected by different type of noise. These techniques were applied to improve image quality and come up with an acceptable image contrast. The proposed method included five different enhancement techniques: Normalization, Histogram Equalization, Binarization, Skeletonization and Fusion. The Normalization process standardized the pixel intensity which facilitated the processing of subsequent image enhancement stages. Subsequently, the Histogram Equalization technique increased the contrast of the images. Furthermore, the Binarization and Skeletonization techniques were implemented to differentiate between the ridge and valley structures and to obtain one
... Show MoreMany image processing and machine learning applications require sufficient image feature selection and representation. This can be achieved by imitating human ability to process visual information. One such ability is that human eyes are much more sensitive to changes in the intensity (luminance) than the color information. In this paper, we present how to exploit luminance information, organized in a pyramid structure, to transfer properties between two images. Two applications are presented to demonstrate the results of using luminance channel in the similarity metric of two images. These are image generation; where a target image is to be generated from a source one, and image colorization; where color information is to be browsed from o
... Show MoreThis research aims to know the intellectual picture the displaced people formed about aid organizations and determine whether they were positive or negative, the researchers used survey tool as standard to study the society represented by displaced people living in Baghdad camps from Shiites, Sunnis, Shabak, Turkmen, Christians, and Ezidis.
The researcher reached to important results and the most important thing he found is that displaced people living in camps included in this survey hold a positive opinion about organizations working to meet their demands but they complain about the shortfall in the health care side.
The research also found that displaced people from (Shabak, Turkmen, and Ezidi) minorities see that internati
In this paper, membrane-based computing image segmentation, both region-based and edge-based, is proposed for medical images that involve two types of neighborhood relations between pixels. These neighborhood relations—namely, 4-adjacency and 8-adjacency of a membrane computing approach—construct a family of tissue-like P systems for segmenting actual 2D medical images in a constant number of steps; the two types of adjacency were compared using different hardware platforms. The process involves the generation of membrane-based segmentation rules for 2D medical images. The rules are written in the P-Lingua format and appended to the input image for visualization. The findings show that the neighborhood relations between pixels o
... Show More