Preferred Language
Articles
/
Thb84osBVTCNdQwCA-O-
Spin-Image Descriptors for Text-Independent Speaker Recognition
...Show More Authors

Building a system to identify individuals through their speech recording can find its application in diverse areas, such as telephone shopping, voice mail and security control. However, building such systems is a tricky task because of the vast range of differences in the human voice. Thus, selecting strong features becomes very crucial for the recognition system. Therefore, a speaker recognition system based on new spin-image descriptors (SISR) is proposed in this paper. In the proposed system, circular windows (spins) are extracted from the frequency domain of the spectrogram image of the sound, and then a run length matrix is built for each spin, to work as a base for feature extraction tasks. Five different descriptors are generated from the run length matrix within each spin and the final feature vector is then used to populate a deep belief network for classification purpose. The proposed SISR system is evaluated using the English language Speech Database for Speaker Recognition (ELSDSR) database. The experimental results were achieved with 96.46 accuracy; showing that the proposed SISR system outperforms those reported in the related current research work in terms of recognition accuracy.

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Dec 01 2014
Journal Name
2014 Ieee Student Conference On Research And Development
Feature extraction for co-occurrence-based cosine similarity score of text documents
...Show More Authors

View Publication
Scopus (10)
Crossref (10)
Scopus Crossref
Publication Date
Wed Jun 01 2011
Journal Name
Journal Of Al-nahrain University Science
A Lexical and Syntax Checker Tool for the Hyper Text Markup Language
...Show More Authors

View Publication
Crossref
Publication Date
Thu Nov 17 2022
Journal Name
Journal Of Information And Optimization Sciences
Hybrid deep learning model for Arabic text classification based on mutual information
...Show More Authors

View Publication
Crossref (5)
Clarivate Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Telkomnika (telecommunication Computing Electronics And Control)
An efficient method for stamps recognition using Haar wavelet sub-bands
...Show More Authors

View Publication
Scopus (3)
Scopus Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
Comparison of Faster R-CNN and YOLOv5 for Overlapping Objects Recognition
...Show More Authors

Classifying an overlapping object is one of the main challenges faced by researchers who work in object detection and recognition. Most of the available algorithms that have been developed are only able to classify or recognize objects which are either individually separated from each other or a single object in a scene(s), but not overlapping kitchen utensil objects. In this project, Faster R-CNN and YOLOv5 algorithms were proposed to detect and classify an overlapping object in a kitchen area.  The YOLOv5 and Faster R-CNN were applied to overlapping objects where the filter or kernel that are expected to be able to separate the overlapping object in the dedicated layer of applying models. A kitchen utensil benchmark image database and

... Show More
View Publication Preview PDF
Scopus (21)
Crossref (17)
Scopus Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Biomedical Signal Processing And Control
Decoding transient sEMG data for intent motion recognition in transhumeral amputees
...Show More Authors

View Publication
Scopus (28)
Crossref (27)
Scopus Clarivate Crossref
Publication Date
Tue Dec 07 2021
Design and numerical verification of a polarization-independent grating coupler using a double-layer approach for visible wavelengths applications
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Communications In Computer And Information Science
Automatically Recognizing Emotions in Text Using Prediction by Partial Matching (PPM) Text Compression Method
...Show More Authors

In this paper, we investigate the automatic recognition of emotion in text. We perform experiments with a new method of classification based on the PPM character-based text compression scheme. These experiments involve both coarse-grained classification (whether a text is emotional or not) and also fine-grained classification such as recognising Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method significantly outperforms the traditional word-based text classification methods. The results show that the PPM compression based classification method is able to distinguish between emotional and nonemotional text with high accuracy, between texts invo

... Show More
View Publication
Scopus (2)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Jun 01 2008
Journal Name
Baghdad Science Journal
Tamper Detection in Text Document
...Show More Authors

Although text document images authentication is difficult due to the binary nature and clear separation between the background and foreground but it is getting higher demand for many applications. Most previous researches in this field depend on insertion watermark in the document, the drawback in these techniques lie in the fact that changing pixel values in a binary document could introduce irregularities that are very visually noticeable. In this paper, a new method is proposed for object-based text document authentication, in which I propose a different approach where a text document is signed by shifting individual words slightly left or right from their original positions to make the center of gravity for each line fall in with the m

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 31 2016
Journal Name
Al-kindy College Medical Journal
A Comparison of Sagittal Sections of Short T1inversion Recovery and T2 Weighted Fast Spin Echo Magnetic Resonance Sequences for Detection of Multiple Sclerosis Spinal Cord Lesions
...Show More Authors

Background: Multiple sclerosis is a chronic autoimmune inflammatory demyelinating disease of the central nervous system of unknown etiology. Different techniques and magnetic resonance image sequences are widely used and compared to each other to improve the detection of multiple sclerosis lesions in the spinal cord. Objective: To evaluate the ability of MRI short tau inversion recovery sequences in improvementof multiple sclerosis spinal cord lesion detection when compared to T2 weighted image sequences. Type of the study: A retrospective study. Methods: this study conducted from 15thAugust 2013 to 30thJune 2014 at Baghdad teaching hospital. 22 clinically definite MS patients with clinical features suggestive of spinal cord involvement,

... Show More
View Publication Preview PDF