Building a system to identify individuals through their speech recording can find its application in diverse areas, such as telephone shopping, voice mail and security control. However, building such systems is a tricky task because of the vast range of differences in the human voice. Thus, selecting strong features becomes very crucial for the recognition system. Therefore, a speaker recognition system based on new spin-image descriptors (SISR) is proposed in this paper. In the proposed system, circular windows (spins) are extracted from the frequency domain of the spectrogram image of the sound, and then a run length matrix is built for each spin, to work as a base for feature extraction tasks. Five different descriptors are generated from the run length matrix within each spin and the final feature vector is then used to populate a deep belief network for classification purpose. The proposed SISR system is evaluated using the English language Speech Database for Speaker Recognition (ELSDSR) database. The experimental results were achieved with 96.46 accuracy; showing that the proposed SISR system outperforms those reported in the related current research work in terms of recognition accuracy.
The absurdity of Orientalist thought and its deviation in interpretation
Quranic text
View and critique
Text Clustering consists of grouping objects of similar categories. The initial centroids influence operation of the system with the potential to become trapped in local optima. The second issue pertains to the impact of a huge number of features on the determination of optimal initial centroids. The problem of dimensionality may be reduced by feature selection. Therefore, Wind Driven Optimization (WDO) was employed as Feature Selection to reduce the unimportant words from the text. In addition, the current study has integrated a novel clustering optimization technique called the WDO (Wasp Swarm Optimization) to effectively determine the most suitable initial centroids. The result showed the new meta-heuristic which is WDO was employed as t
... Show MoreThe study discusses the marketing profile of electoral candidates and politicians especially the image that takes root in the minds of voters has become more important than the ideologies in the technological era or their party affiliations and voters are no longer paying attention to the concepts of a liberal, conservative, right-wing or secular, etc. while their interests have increased towards candidates. The consultants and image experts are able to make a dramatic shift in their electoral roles. They, as specialists in the electoral arena, dominate the roles of political parties.
The importance of the study comes from the fact that the image exceeds its normal framework in our contemporary world to become political and cultural
WA Shukur, FA Abdullatif, Ibn Al-Haitham Journal For Pure and Applied Sciences, 2011 With wide spread of internet, and increase the price of information, steganography become very important to communication. Over many years used different types of digital cover to hide information as a cover channel, image from important digital cover used in steganography because widely use in internet without suspicious.
Image Fusion Using A Convolutional Neural Network
In this paper, visible image watermarking algorithm based on biorthogonal wavelet
transform is proposed. The watermark (logo) of type binary image can be embedded in the
host gray image by using coefficients bands of the transformed host image by biorthogonal
transform domain. The logo image can be embedded in the top-left corner or spread over the
whole host image. A scaling value (α) in the frequency domain is introduced to control the
perception of the watermarked image. Experimental results show that this watermark
algorithm gives visible logo with and no losses in the recovery process of the original image,
the calculated PSNR values support that. Good robustness against attempt to remove the
watermark was s