Building a system to identify individuals through their speech recording can find its application in diverse areas, such as telephone shopping, voice mail and security control. However, building such systems is a tricky task because of the vast range of differences in the human voice. Thus, selecting strong features becomes very crucial for the recognition system. Therefore, a speaker recognition system based on new spin-image descriptors (SISR) is proposed in this paper. In the proposed system, circular windows (spins) are extracted from the frequency domain of the spectrogram image of the sound, and then a run length matrix is built for each spin, to work as a base for feature extraction tasks. Five different descriptors are generated from the run length matrix within each spin and the final feature vector is then used to populate a deep belief network for classification purpose. The proposed SISR system is evaluated using the English language Speech Database for Speaker Recognition (ELSDSR) database. The experimental results were achieved with 96.46 accuracy; showing that the proposed SISR system outperforms those reported in the related current research work in terms of recognition accuracy.
The aim of this work is to evaluate the one- electron expectation value from the radial electronic density function D(r1) for different wave function for the 2S state of Be atom . The wave function used were published in 1960,1974and 1993, respectavily. Using Hartree-Fock wave function as a Slater determinant has used the partitioning technique for the analysis open shell system of Be (1s22s2) state, the analyze Be atom for six-pairs electronic wave function , tow of these are for intra-shells (K,L) and the rest for inter-shells(KL) . The results are obtained numerically by using computer programs (Mathcad).
In this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.
The aim of this paper is to design artificial neural network as an alternative accurate tool to estimate concentration of Cadmium in contaminated soils for any depth and time. First, fifty soil samples were harvested from a phytoremediated contaminated site located in Qanat Aljaeesh in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. The inputs are the soil depth, the time, and the soil parameters but the output is the concentration of Cu in the soil for depth x and time t. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Cadmium. The performance of the ANN technique was compared with the traditional laboratory inspecting
... Show MoreA batch adsorption system was applied to study the adsorption of methylene blue from aqueous solution by Iraqi bentonite and treated bentonite with different amount of zinc oxide (ZnO). The adsorption capacities of methylene blue onto bentonite were evaluated. The equilibrium between liquid and solid phase was described by Langmuir model better than the Freundlich model. Langmuir and Freundlich constants have been determined. The separation factor or equilibrium parameter, RL which is used to predict if an adsorption system is favourable or unfavourable was calculated for all cases.
The analytic solution for the unsteady flow of generalized Oldroyd- B fluid on oscillating rectangular duct is studied. In the absence of the frequency of oscillations, we obtain the problem for the flow of generalized Oldroyd- B fluid in a duct of rectangular cross- section moving parallel to its length. The problem is solved by applying the double finite Fourier sine and discrete Laplace transforms. The solutions for the generalized Maxwell fluids and the ordinary Maxwell fluid appear as limiting cases of the solutions obtained here. Finally, the effect of material parameters on the velocity profile spotlighted by means of the graphical illustrations