It is widely accepted that early diagnosis of Alzheimer's disease (AD) makes it possible for patients to gain access to appropriate health care services and would facilitate the development of new therapies. AD starts many years before its clinical manifestations and a biomarker that provides a measure of changes in the brain in this period would be useful for early diagnosis of AD. Given the rapid increase in the number of older people suffering from AD, there is a need for an accurate, low-cost and easy to use biomarkers that could be used to detect AD in its early stages. Potentially, the electroencephalogram (EEG) can play a vital role in this but at present, no reliable EEG biomarker exists for early diagnosis of AD. The gradual slowing of brain activity caused by AD starts from the back of the brain and spreads out towards other parts. Consequently, determining the brain regions that are first affected by AD may be useful in its early diagnosis. Higuchi fractal dimension (HFD) has characteristics which make it suited to capturing region-specific neural changes due to AD. The aim of this study is to investigate the potential of HFD of the EEG as a biomarker which is associated with the brain region first affected by AD. Mean HFD value was calculated for all channels of EEG signals recorded from 52 subjects (20-AD and 32-normal). Then, p-values were calculated between the two groups (AD and normal) to detect EEG channels that have a significant association with AD. k-nearest neighbor (KNN) algorithm was used to compute the distance between AD patients and normal subjects in the classification. Our results show that AD patients have significantly lower HFD values in the parietal areas. HFD values for channels in these areas were used to discriminate between AD and normal subjects with a sensitivity and specificity values of 100% and 80%, respectively.
Wildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob
... Show MoreAdverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD
... Show MoreToxoplasmosis is an infection caused by Toxoplasma gondii that leads to abortion or hydrocephalus during pregnancy.One hundered and twenty two aborted women were selected for this study. Serum samples were collected form Al-Kadhmia and Kamal Al-Samari Hospitals,and laboratories around Baghdad, and tested for specific IgG and IgM anti-toxoplasma antibodies to confirm toxoplasmosis in those women by using ELISA test.The result recorded that 51(41.8%) women had antibodies against Toxoplasma gondii, 25(59.5%) women were positive for IgG, and 17(40.5%) women were positive forIgM, while 9(17.6%)women were positive for both.
The enrollment of students in the university represents a new stage in their life that differ from the previous educational stages that student has previously established. It should be noted that students with special needs at the University of Baghdad are not large numbers. It appears that these students have an excel role in their colleges most often, That is, the handicap was not a barrier to their scientific progress, but rather an incentive for them to excel. The most important conclusion reached by the researcher is that the University of Baghdad had no role in caring for people with special needs and caring for them financially, socially, psychologically, healthily and economically, they need to pay attention to them and take care
... Show MoreNystatin is the drug of choice for treatment of cutaneous fungal infections with main disadvantage that is the need for multiple applications to achieve complete eradication which may reduce patient compliance. Microparticles offer a solution for such issue as they are one of sustained release preparations that achieve slow release of drug over an extended period of time. The objectives of this study were to fabricate nystatin-loaded chitosan microparticles with the ultimate goal of prolonging drug release and to analyze the influence of polymer concentration on various properties of microparticles. Microparticles were prepared by chemical cross-linking method using glutaraldehyde as cross-linking agent. Five formulas, namely N1C1, N1C2,
... Show MoreArrested precipitation methode used to synthesize CuInSe2 (CIS) nanocrystals were added to a hot solvent with organic capping ligands to control nanocrystal formation and growth. CIS thin films deposited onto Soda-Lima Glass (SLG) substrate by spray-coat, then selenized in Ar-atmosphere to form CIS thin films. PVs were made with power conversion efficiencies of 0.631% as-deposited and 0.846% after selenization, for Mo coated, under AM 1.5 illuminations. (XRD) and (EDX) it is evident that CIS have chalcopyrite structure as the major phase with a preferred orientation along (112) direction and Cu:In:Se nanocrystals is nearly 1:1:2 atomic ratio.