<p>Generally, The sending process of secret information via the transmission channel or any carrier medium is not secured. For this reason, the techniques of information hiding are needed. Therefore, steganography must take place before transmission. To embed a secret message at optimal positions of the cover image under spatial domain, using the developed particle swarm optimization algorithm (Dev.-PSO) to do that purpose in this paper based on Least Significant Bits (LSB) using LSB substitution. The main aim of (Dev. -PSO) algorithm is determining an optimal paths to reach a required goals in the specified search space based on disposal of them, using (Dev.-PSO) algorithm produces the paths of a required goals with most effi
... Show MoreThis paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance
... Show MoreThis research aims to solve the problem of selection using clustering algorithm, in this research optimal portfolio is formation using the single index model, and the real data are consisting from the stocks Iraqi Stock Exchange in the period 1/1/2007 to 31/12/2019. because the data series have missing values ,we used the two-stage missing value compensation method, the knowledge gap was inability the portfolio models to reduce The estimation error , inaccuracy of the cut-off rate and the Treynor ratio combine stocks into the portfolio that caused to decline in their performance, all these problems required employing clustering technic to data mining and regrouping it within clusters with similar characteristics to outperform the portfolio
... Show MoreThe study aims to evaluate the removal of sulfur content from Iraqi light naphtha produced in Al-Dora refinery by adsorption desulfurization DS technique using modified activated carbon MAC loaded with nickel Ni and copper Cu as single binary metals. The experiments were carried in a batch unit with various operating parameters; MAC dosage, agitation speed, and a contact time of 300 min at constant initial sulfur concentration 155 ppm and temperature. The results showed higher DS% by AC/Ni-Cu (66.45)% at 500 rpm and 1 g dosage than DS (29.03)% by activated carbon AC, increasing MAC dosage, agitation speed, and contact time led to increasing DS% values. The adsorption capacity of MAC results was recorded (16, 15, and 20) mg sulfu
... Show MoreThe study aims to evaluate the removal of sulfur content from Iraqi light naphtha produced in Al-Dora refinery by adsorption desulfurization DS technique using modified activated carbon MAC loaded with nickel Ni and copper Cu as single binary metals. The experiments were carried in a batch unit with various operating parameters; MAC dosage, agitation speed, and a contact time of 300 min at constant initial sulfur concentration 155 ppm and temperature. The results showed higher DS% by AC/Ni-Cu (66.45)% at 500 rpm and 1 g dosage than DS (29.03)% by activated carbon AC, increasing MAC dosage, agitation speed, and contact time led to increasing DS% values. The adsorption capacity of MAC results was recorded (16,
... Show MoreThis paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback
... Show More