Nanofluids (i.e. nanoparticles dispersed in a fluid) have tremendous potential in a broad range of applications, including pharmacy, medicine, water treatment, soil decontamination, or oil recovery and CO2 geo-sequestration. In these applications nanofluid stability plays a key role, and typically robust stability is required. However, the fluids in these applications are saline, and no stability data is available for such salt-containing fluids. We thus measured and quantified nanofluid stability for a wide range of nanofluid formulations, as a function of salinity, nanoparticle content and various additives, and we investigated how this stability can be improved. Zeta sizer and dynamic light scattering (DLS) principles were used to investigate zeta potential and particle size distribution of nanoparticle-surfactant formulations. Also scanning electron microscopy was used to examine the physicochemical aspects of the suspension. We found that the salt drastically reduced nanofluid stability (because of the screening effect on the repulsive forces between the nanoparticles), while addition of anionic surfactant improved stability. Cationic surfactants again deteriorated stability. Mechanisms for the different behaviour of the different formulations were identified and are discussed here. We thus conclude that for achieving maximum nanofluid stability, anionic surfactant should be added.
In this study, multi-objective optimization of nanofluid aluminum oxide in a mixture of water and ethylene glycol (40:60) is studied. In order to reduce viscosity and increase thermal conductivity of nanofluids, NSGA-II algorithm is used to alter the temperature and volume fraction of nanoparticles. Neural network modeling of experimental data is used to obtain the values of viscosity and thermal conductivity on temperature and volume fraction of nanoparticles. In order to evaluate the optimization objective functions, neural network optimization is connected to NSGA-II algorithm and at any time assessment of the fitness function, the neural network model is called. Finally, Pareto Front and the corresponding optimum points are provided and
... Show Moreھدف البحث الـــــى : ١ -إعداد تدریبات القوة الارتدادیة في وسطین متباینین على بعض المؤشرات الفسیولوجیة لتطویر القوة الانفجاریة ودقة مھارتي الأرسال والضرب الساحق بالكرة الطائرة . ٢ -التعرف على تأثیر تدریبات القوة الارتدادیة في وسطین متباینین على بعض المؤشرات الفسیولوجیة لتطویر القوة الانفجاریة.. ٣ -التعرف على تأثیر تدریبات القوة الارتدادیة في وسطین متباینین على دقة مھارتي الأرسال والضرب الساحق بالكرة الطائرة
... Show MoreInfection with cryptosporidiosis endangers the lives of many people with immunodeficiency, especially HIV patients. Nitazoxanide is one of the main therapeutic drugs used to treat cryptosporidiosis. However, it is poorly soluble in water, which restricts its usefulness and efficacy in immunocompromised patients. Surfactants have an amphiphilic character which indicates their ability to improve the water solubility of the hydrophobic drugs. Our research concerns the synthesis of new cationic Gemini surfactants that have the ability to improve the solubility of the drug Nanazoxide. So, we synthesized cationic Gemini surfactants. N1,N1,N3,N3-tetramethyl-N1,N3-bis(2-octadecanamidoethyl)propane-1,3-diaminium bromide (CGSPS18) and 2,2‘-(etha
... Show MoreSorption is a key factor in removal of organic and inorganic contaminants from their aqueous solutions. In this study, we investigated the removal of Xylenol Orange tetrasodium salt (XOTS) from its aqueous solution by Bauxite (BXT) and cationic surfactant hexadecyltrimethyl ammonium bromide modified Bauxite (BXT-HDTMA) in batch experiments. The BXT and BXT-HDTMA were characterized using FTIR, and SEM techniques. Adsorption studies were performed at various parameters i.e. temperature, contact time, adsorbent weight, and pH. The modified BXT showed better maximum removal efficiency (98.6% at pH = 9.03) compared to natural Bauxite (75% at pH 2.27), suggesting that BXT-HDTMA is an excellent adsorbent for the removal of XOTS from water. The equ
... Show MoreNanofluids (dispersion of nanoparticles in a base fluid) have been suggested as promising agents in subsurface industries including enhanced oil recovery. Nanoparticles can easily pass through small pore throats in reservoirs formations; however, physicochemical interactions between nanoparticles and between nanoparticles and rocks can cause a significant retention of nanoparticles. This study investigated the transport, attach, and retention of silica nanoparticles in core plugs. The hydrophilic silica nanoparticles were injected into limestone core as nanofluid of different nanoparticles size (5 nm, and 20 nm), concentration (0.005 – 0.1 wt% SiO2), and base fluid salinity (0 – 3 wt% NaCl) at different temperatures (23, and 50 °C). D
... Show MoreThe rotation effect upon Morse potential had been studied and the values of the effective potential in potential curves had been calculated for electronic states (X2?+g , B ?u ) K2 molecule. The calculation had been computed for rotational quantum number (J = 5). Also, drawing potential curves for these systems had been done using Herzberg and Gaydon equations. It was found that the values of the dissociation energy which resulting from using Herzberg equation greater than that of Gaydon equation. Besides, it was found that the rotation effect for (X and B) electronic states in Morse potential is very small and in this case may negligible.
Nanoparticles are defined as an organic or non-organic structure of matter in at least one of its dimensions less than 100 nm. Nanoparticles proved their effectiveness in different fields because of their unique physicochemical properties. Using nanoparticles in the power field contributes to cleaning and decreasing environmental pollution, which means it is an environmentally friendly material. It could be used in many different parts of batteries, including an anode, cathode, and electrolyte. This study reviews different types of nanoparticles used in Lithium-ion batteries by collecting the advanced techniques for applying nanotechnology in batteries. In addition, this review presents an idea about the advantages and d
... Show MoreThe corrosion behavior of mild sleet in saturated aerated and de-aerated Ca(OH)2 solution was investigated using electrochemical measurements. The work was carried out with small coupons immersed in solutions containing different quantities of NaCl in presence of various NaN02 concentrations as corrosion inhibitors. It has been found thal:(1 ) In presence of NaCl, the time required to reach O2 evolution potential in de-aerated Ca(OH)2 polarized at 10μA/cm 2 is function of inhibitor concentration and it becomes lass as NaN02 increases compared with zero presence indicating the effectiveness of N
... Show MoreThe sol-gel preparation technique of transparent silica monoliths containing up to 0.5 M of samarium have been described. The sol-gel processing parameters are: acid catalyzed hydrolysis and controlled drying. The prepared monoliths are analyzed by X-ray diffraction, pycnometer measurements, Fourier transformation infrared spectroscopy and optical spectroscopy. The oscillator strengths of the Sm3+ ions in the silica monoliths are calculated. The results show a linear concentration dependence of some Sm3+ transitions in UV/Vis absorption spectra and formation of Sm3+ clusters inside the pores structure of silica monoliths at high Sm3+ concentration