Nanofluids (i.e. nanoparticles dispersed in a fluid) have tremendous potential in a broad range of applications, including pharmacy, medicine, water treatment, soil decontamination, or oil recovery and CO2 geo-sequestration. In these applications nanofluid stability plays a key role, and typically robust stability is required. However, the fluids in these applications are saline, and no stability data is available for such salt-containing fluids. We thus measured and quantified nanofluid stability for a wide range of nanofluid formulations, as a function of salinity, nanoparticle content and various additives, and we investigated how this stability can be improved. Zeta sizer and dynamic light scattering (DLS) principles were used to investigate zeta potential and particle size distribution of nanoparticle-surfactant formulations. Also scanning electron microscopy was used to examine the physicochemical aspects of the suspension. We found that the salt drastically reduced nanofluid stability (because of the screening effect on the repulsive forces between the nanoparticles), while addition of anionic surfactant improved stability. Cationic surfactants again deteriorated stability. Mechanisms for the different behaviour of the different formulations were identified and are discussed here. We thus conclude that for achieving maximum nanofluid stability, anionic surfactant should be added.
The thermal method was used to produce silicoaluminophosphate (SAPO-11) with different amounts of carbon nanotubes (CNT). XRD, nitrogen adsorption-desorption, SEM, AFM, and FTIR were used to characterize the prepared catalyst. It was discovered that adding CNT increased the crystallinity of the synthesize SAPO-11 at all the temperatures which studied, wile the maximum surface area was 179.54 m2/g obtained at 190°C with 7.5 percent of CNT with a pore volume of 0.317 cm3/g ,and with nano-particles with average particle diameter of 24.8 nm, while the final molar composition of the prepared SAPO-11 was (Al2O3:0.93P2O5:0.414SiO2).
Sol-gel method was use to prepare Ag-SiO2 nanoparticles. Crystal structure of the nanocomposite was investigated by means of X-ray diffraction patterns while the color intensity was evaluated by spectrophotometry. The morphology analysis using atomic force microscopy showed that the average grain sizes were in range (68.96-75.81 nm) for all samples. The characterization of Ag-SiO2 nanoparticles were investigated by using Scanning Electron Microscopy (SEM). Ag-SiO2 NPs are highly stable and have significant effect on both Gram positive and negative bacteria. Antibacterial properties of the nanocomposite were tested with the use of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria. The results have shown antibacteri
... Show MoreMoisture damage is described as a reduction in stiffness and strength durability in asphalt mixtures due to moisture. This study investigated the influence of adding nano silica (NS) to the Asphalt on the moisture susceptibility of hot-mix-asphalt (HMA) mixtures under different aging conditions. NS was mixed with asphalt binder at concentrations of 2%, 4%, and 6% by weight of the binder. To detect the microstructure changes of modified Asphalt and estimate the dispersion of NS within the Asphalt, the field emission scanning electron microscope (FE-SEM) was used. To examine the performance of Asphalt mixed with NS at different aging stages (short-term and long-term aging), asphalt mixture tests such as Marshall stability,
... Show MoreThe varied thermal conductivity (insulation) of silica aerogel with heating for different pH has been investigated, it has been depended on ambient pressure drying method in the preparing silica aerogel samples, also six different pH of samples (1, 2, 3, 7, 8 and 9) were treated under five degree of heating with (50,100,150,200 and 250) ᴼC. This technique is important to test the carry-outs hydrophobic silica to temperature without high-quality material changes in the basic characteristics. The hot-wire technique is used in this work to examine the thermal conductivity, Fourier Transform Infrared Spectroscopy (FTIR) depended to characterize the bonds and their artificial by heating. Resu
... Show MoreFree cement refractory concrete is a type of refractory concrete with replacing alumina cement by bonding materials such as white kaolin, red kaolin and fumed silica. The free cement refractory concrete used in many applications like Petrochemicals, iron furnaces and cement production industries. The research clarifies the effect of steel fibers with two types crimped steel fibers and hooked steel
fibers with percentages 0.5%, 1% and 1.5% by volume from weight of bauxite aggregates. The additions of steel fibers with two types gave good properties in high temperatures where the specimens keep the dimension without failure and the properties made the best. the percentage of increasing for thermal conductivity was 44% for 1.5% crimped
To achieve sustainability, use waste materials to make concrete to use alternative components and reduce the production of Portland cement. Lime cement was used instead of Portland cement, and 15% of the cement's weight was replaced with silica fume. Also used were eco-friendly fibers (copper fiber) made from recycled electrical. This work examines the impact of utilizing sustainable copper fiber with different aspect ratios (l/d) on some mechanical properties of high-strength green concrete. A high-strength cement mixture with a compressive strength of 65 MPa in line with ACI 211.4R was required to complete the assignment. Copper fibers of 1% by volume of concrete were employed in mixes with four different aspect ratios
... Show MoreThis study involves the design of 24 mixtures of fiber reinforced magnetic reactive powder concrete containing nano Silica. Tap water has been used in mixing 12 of these mixtures, while the other 12 have been mixed using magnetic water. Nano Silica (NS) with ratios (1, 1.5, 2, 2.5 and 3) % were used. The results showed that the mixture containing 2.5%NS gives the highest compressive strength at age 7 days. Many different other tests were carried out, the results showed that the fiber reinforced magnetic reactive powder concrete containing 2.5% NS (FRMRPCCNS) has the higher bulk density, dynamic modulus of elasticity, ultrasonic pulse velocity electrical resistivity and lesser absorption than fiber reinforced
... Show MoreThe article describes the basic principles of modeling a dictionary article in the “Dictionary of the Language of Russian Folklore Lexicon epics” (M. A. Bobunova, A. T. Khrolenko). Among such principles are the principle of linguocentrism (representation of universal cognitions in strict observance of the traditions of lexicographic science), the principle of anthropocentrism (language learning as a means of human consciousness / subconsciousness), the principle of expansionism (attracting material from various knowledge bases), the principle of explanatory ("explanatory moment"), and fractal principle (synergistic potential of the presented material: nonlinearity and self-similarity; hierarchical organizati
... Show Moreم. د. ولاء طارق حميد, Al. Qadisiya journal for the Sciences of Physical Education, 2017
This study aims to identify the degree of Arabic language teachers at the secondary stage possessing the teaching competencies necessary to develop the skills of literary savor among their students from the perception of educational leaders in Bisha Province. To achieve the objectives of the study, the descriptive approach was used by adopting a comprehensive survey method. The study sample consisted of (48) school principals and Arabic language supervisors in Bisha Province who supervise the teaching of Arabic language at the secondary level in Bisha Province. The necessary data was collected using a questionnaire. The results of the study revealed that the evaluation of the study sample for the degree to which Arabic language teachers
... Show More