The objective of the current research was to develop the posaconazole (PCZ) loaded NS into the carbopol 934 polymeric gel for prolonged drug release and improved topical delivery; seven different nanosponge formulations of PCZ were formulated using the emulsion solvent diffusion method using various amounts of polymer (ethylcellulose, EC). The aqueous and dispersed phases were prepared using polyvinyl alcohol (PVA) and dichloromethane. The prepared nanosponges (NS) were studied for particle size, structural appearance, and in vitro drug release. Furthermore, the selected formula was formulated as hydrogel and was evaluated for physical characteristics, drug content, and in-vitro drug release. Morphological studies revealed irregular shapes, rough and porous surfaces of nanosponges. The particle sizes were in the range of 201.6 ± 29.9 to 4904.7 ± 540.4 nm. In-vitro release studies revealed the sustained release pattern of the drug-loaded nanosponges. The lyophilized PCZ-NS formula had a 12-fold increase in saturation solubility over PCZ pure powder. Fourier transform infrared spectroscopy (FTIR) of the selected formula showed no significant shifts in the positions of wavenumbers compared to that of pure drug. This indicates there is no interaction between drug and excipients used. PCZ NS loaded hydrogel significantly improved the dissolution rate, which was significantly higher (p is less than 0.05) than that of pure PCZ hydrogel.
Wildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob
... Show MoreDue to the intensity of competition between economic units that run the trade in durable goods had to pay a lot of these companies to follow the new selling methods aimed at attracting customers to be able to increase its sales and thereby increase their profits , these methods are installment sales, which had been in great demand by the customers with limited income, who provides them with the possibility of possession and use of such goods and to postpone the full amount of the payment to the seller, This transaction sales have grown even became installment sales system at the present time of the common types of sales transactions and deployed a lot in our environment and in many sectors of the market, and in some cases m
... Show MoreHuman interaction technology based on motion capture (MoCap) systems is a vital tool for human kinematics analysis, with applications in clinical settings, animations, and video games. We introduce a new method for analyzing and estimating dorsal spine movement using a MoCap system. The captured data by the MoCap system are processed and analyzed to estimate the motion kinematics of three primary regions; the shoulders, spine, and hips. This work contributes a non-invasive and anatomically guided framework that enables region-specific analysis of spinal motion which could be used as a clinical alternative to invasive measurement techniques. The hierarchy of our model consists of five main levels; motion capture system settings, marker data
... Show MoreThe rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com
... Show MoreIn this paper, the density of state (DOS) at Fe metal contact to Titanium dioxide semiconductor (TiO2) has been studied and investigated using quantum consideration approaches. The study and calculations of (DOS) depended on the orientation and driving energies. was a function of TiO2 and Fe materials' refractive index and dielectric constant. Attention has focused on the effect of on the characteristic of (DOS), which increased with the increasing of refractive index and dielectric constant of Fe metal and vice versa. The results of (DOS) and its relation with and values of system have been discussed. As for contact system is increased, (DOS) values increased at first, but the relation is disturbed later and transforms into an inve
... Show MoreIn this study, NAC-capped CdTe/CdS/ZnS core/double shell QDs were synthesized in an aqueous medium to investigate their utility in distinguishing normal DNA from mutated DNA extracted from biological samples. Following the interaction between the synthesized QDs with DNA extracted from leukemia cases (represents damaged DNA) and that of healthy donors (represents undamaged DNA), differential fluorescent emission maxima and intensities were observed. It was found that damaged DNA from leukemic cells DNA-QDs conjugates at 585 nm while intact DNA (from healthy subjects) DNA–QDs conjugates at 574 nm. The obtained results from the optical analyses indicate that the prepared QDs could be utilized as probe for detecting disrupted DNA th
... Show MoreA new series of metal ions complexes of VO(II), Cr(III), Mn(II), Zn(II), Cd(II) and Ce(III) have been synthesized from the Schiff bases (4-chlorobenzylidene)-urea amine (L1) and (4-bromobenzylidene)-urea amine (L2). Structural features were obtained from their elemental microanalyses, magnetic susceptibility, molar conductance, FT-IR, UV–Vis, LC-Mass and 1HNMR spectral studies. The UV–Vis, magnetic susceptibility and molar conductance data of the complexes suggest a tetrahedral geometry around the central metal ion except, VOII complexes that has square pyramidal geometry, but CrIII and CeIII octahedral geometry. The biological activity for the ligand (L1) and its Vanadium and Cadmium complexes were studied. Structural geometries of com
... Show More