The objective of the current research was to develop the posaconazole (PCZ) loaded NS into the carbopol 934 polymeric gel for prolonged drug release and improved topical delivery; seven different nanosponge formulations of PCZ were formulated using the emulsion solvent diffusion method using various amounts of polymer (ethylcellulose, EC). The aqueous and dispersed phases were prepared using polyvinyl alcohol (PVA) and dichloromethane. The prepared nanosponges (NS) were studied for particle size, structural appearance, and in vitro drug release. Furthermore, the selected formula was formulated as hydrogel and was evaluated for physical characteristics, drug content, and in-vitro drug release. Morphological studies revealed irregular shapes, rough and porous surfaces of nanosponges. The particle sizes were in the range of 201.6 ± 29.9 to 4904.7 ± 540.4 nm. In-vitro release studies revealed the sustained release pattern of the drug-loaded nanosponges. The lyophilized PCZ-NS formula had a 12-fold increase in saturation solubility over PCZ pure powder. Fourier transform infrared spectroscopy (FTIR) of the selected formula showed no significant shifts in the positions of wavenumbers compared to that of pure drug. This indicates there is no interaction between drug and excipients used. PCZ NS loaded hydrogel significantly improved the dissolution rate, which was significantly higher (p is less than 0.05) than that of pure PCZ hydrogel.
Invasomes are newly developed types of nanovesicles. A vesicular drug delivery system is considered one of the approaches for transdermal delivery to enhance permeation and improve drug bioavailability. Ondansetron is a serotonin receptor antagonist used for treating vomiting associated with different clinical cases. The study aimed to prepare invasomal dispersions for improving permeation of ondansetron across the skin with a controlled release pattern. Twenty-seven formulas of ondansetron-loaded invasomes were prepared by a modified mechanical dispersion method. These formulas were optimized by studying the effect of variables on entrapment efficiency. Vesicle size, polydispersity, zeta potential, in-vitro release and ex-vivo perm
... Show MoreFlurbiprofen (FLB) is chemically 2-(3- fluoro-4-phenyl phenyl) propanoic acid. It is a nonsteroidal anti-inflammatory drug (NSAID) used in the treatment of rheumatoid arthritis and osteoarthritis. Oral administration of this drug is associated with severe gastrointestinal side effects like ulceration and gastrointestinal bleeding. The solution to this problem lies in the fact that topically applied NSAIDs are safer than orally. This study aims to prepare different topical semisolid formulation of FLB as cream base (o/w), (w/o) and gel base using different gel-forming agents in different concentrations. Comparing characterization properties in addition to release and diffusion study for all the prepared formulas to select the best on
... Show MorePulsatile drug delivery systems (PDDS) are developed to deliver drug according to circadian behavior of diseases. They deliver the drug at the right time, action and in the right amount, which provides more benefit than conventional dosages and increased patient compliance. The drug is released rapidly and completely as a pulse after a lag time. These systems are beneficial for drugs with chrono-pharmacological behavior, where nighttime dosing is required and for the drugs having a high first-pass effect and having specific site of absorption in the gastrointestinal tract. This article covers methods and marketed technologies that have been developed to achieve pulsatile delivery. Diseases wherein PDDS are promising include asthma, peptic u
... Show MoreTransdermal drug delivery has made an important contribution to medical practice but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. Transdermal therapeutic systems have been designed to provide controlled continuous delivery of drugs through the skin to the systemic circulation. A transdermal patch is an adhesive patch that has a coating of drug; the patch is placed on the skin to deliver particular amount of drug into the systemic circulation over a period of time. The transdermal drug delivery systems (TDDS) review articles provide information regarding the transdermal drug delivery systems and its evaluation process as a ready reference for the research scientist who is involved
... Show MoreThe aim of the present study was to develop theophylline (TP) inhalable sustained delivery system by preparing solid lipid microparticles using glyceryl behenate (GB) and poloxamer 188 (PX) as a lipid carrier and a surfactant respectively. The method involves loading TP nanoparticles into the lipid using high shear homogenization – ultrasonication technique followed by lyophilization. The compositional variations and interactions were evaluated using response surface methodology, a Box – Behnken design of experiment (DOE). The DOE constructed using TP (X1), GB (X2) and PX (X3) levels as independent factors. Responses measured were the entrapment efficiency (% EE) (Y1), mass median
... Show MorePoly vinyl alcohol has been studied for its ability to form crystallites by using annealing method. Semicrystalline films of poly vinyl alcohol (PVA) were prepared by casting 11.5 wt. % and 13 wt. % PVA aqueous solution onto glass slides at annealing temperature range 90 -120°C and duration time 15- 60 minute. This allowed the macromolecules to form crystallites, small regions of folded and compacted chains separated by amorphous regions where single PVA chain may pass through several of these crystallites. Degree of crystallinity of PVA films (hydrogels) was determined by method of density; on the other hand the swelling behavior was conducted by the determination of water uptake, wet degree of crystallinity, gel fraction and solubilit
... Show MoreMefenamic acid was esterified with starchwith[1:1] Molar ratio, as drug substituted with natural polymer, to prolongthe period of hydrolysis of drug polymer with other advantages. The new prodrug starch was characterized by FT-IR and UV-Visible and 1H-NMR spectroscopies. The physical properties were studied and controlled drug release was studied in different pH values at 37oC. The stability of drug was carried out by measuring the absorbance of mefenamic starch which hydrolyzed in HCl solution of pH 1.1 (artificial gastric fluid) and phosphate buffer of pH 7.4 (simulating intestinal fluid SIF) at 37oC for several days. The thermal analysis such as DSC was studied.