The impact of a simple trailing-edge plain flap on the aerodynamics of the SD7037 airfoil have been studied in this paper using computational fluid dynamics at Reynolds number of 3×105 across various low angles of attack and flap deflection angles. The computational model was evaluated by using Star CCM+ software with κ--ω SST turbulence and gamma transition model to solve Navier-Stokes equations. The accuracy of the computational model has been confirmed through comparison with experimental data, showing a high level of agreement at low angles of attack. The findings revealed that specific combinations of angles of attack and flap deflection angles could increase the lift-to-drag ratio by over 70% compared to baseline conditions, benefiting airfoil performance, particularly during takeoff. Some combinations, however, resulted in decreased performance and should be avoided. The results also showed that with the increase of either the angle of attack or the flap deflection angle, the pitching moment increased.
Water contamination is a pressing global concern, especially regarding the presence of nitrate ions. This research focuses on addressing this issue by developing an effective adsorbent for removing nitrate ions from aqueous solutions. two adsorbents Chitosan-Zeolite-Zirconium (Cs-Ze-Zr composite beads and Chitosan-Bentonite-Zirconium Cs-Bn-Zr composite beads were prepared. The study involved continuous experimentation using a fixed bed column with varying bed heights (1.5 and 3 cm) and inlet flow rates (1 and 3 ml/min). The results showed that the breakthrough time increased with higher bed heights for both Cs-Ze-Zr and Cs-Bn-Zr composite beads. Conversely, an increase in flow rate led to a decrease in breakthrough time. Notab
... Show MoreMicrobiological contamination by fungi impacts the quality and safety of wheat grain storage. This study aimed to evaluate the efficacy of cold plasma in restricting the growth of the fungus, Aspergillus niger, which was isolated from wheat grains. A dielectric barrier discharge (DBD) operating at atmospheric pressure generated cold plasma that was used to treat the fungus, and the impact of this treatment was investigated at various periods 1, 2, 4, 6, and 15 minutes. The results revealed a highly significant decrease in the growth and number of spores of Aspergillus niger compared to the controls. This study revealed an efficient technique for enhancing wheat grain storage that could be a foundation for further large-scale studies.
... Show MoreTheoretical and experimental investigations of free convection through a cubic cavity with sinusoidal heat flux at bottom wall, the top wall is exposed to an outside ambient while the other walls are adiabatic saturated in porous medium had been approved in the present work. The range of Rayleigh number was and Darcy number values were . The theoretical part involved a numerical solution while the experimental part included a set of tests carried out to study the free convection heat transfer in a porous media (glass beads) for sinusoidal heat flux boundary condition. The investigation enclosed values of Rayleigh number (5845.6, 8801, 9456, 15034, 19188 and 22148) and angles of inclinations (0, 15, 30, 45 and 60 degree). The numerical an
... Show MoreIn this paper, we will illustrate a gamma regression model assuming that the dependent variable (Y) is a gamma distribution and that it's mean ( ) is related through a linear predictor with link function which is identity link function g(μ) = μ. It also contains the shape parameter which is not constant and depends on the linear predictor and with link function which is the log link and we will estimate the parameters of gamma regression by using two estimation methods which are The Maximum Likelihood and the Bayesian and a comparison between these methods by using the standard comparison of average squares of error (MSE), where the two methods were applied to real da
... Show MoreGlobal technological advancements drive daily energy consumption, generating additional carbon-induced climate challenges. Modifying process parameters, optimizing design, and employing high-performance working fluids are among the techniques offered by researchers for improving the thermal efficiency of heating and cooling systems. This study investigates the heat transfer enhancement of hybrid “Al2O3-Cu/water” nanofluids flowing in a two-dimensional channel with semicircle ribs. The novelty of this research is in employing semicircle ribs combined with hybrid nanofluids in turbulent flow regimes. A computer modeling approach using a finite volume approach with k-ω shear stress transport turbulence model was used in these simu
... Show MoreIn this study, pure Co3O4 nano structure and doping with 4 %, and
6 % of Yttrium is successfully synthesized by hydrothermal method.
The XRD examination, optical, electrical and photo sensing
properties have been studied for pure and doped Co3O4 thin films.
The X-ray diffraction (XRD) analysis shows that all films are
polycrystalline in nature, having cubic structure.
The optical properties indication that the optical energy gap follows
allowed direct electronic transition calculated using Tauc equation
and it increases for doped Co3O4. The photo sensing properties of
thin films are studied as a function of time at different wavelengths to
find the sensitivity for these lights.
High photo sensitivity dope
In this paper, an experimental study was conducted to enhance the thermal performance of a double-pass solar air heater (SAH) using phase change material (PCM) for thermal storage at climatic conditions of Baghdad city - Iraq. The double-pass solar air heater integrated with thermal storage system was manufactured and tested to ensure that the air heating reserved after the absence of the sun. The rectangular cavity filled with paraffin wax was used as a latent heat storage and incorporated into the lower channel of solar air heater. Experiments were carried out to evaluate the charging and discharging characteristics of two similar designed solar air collectors with and without using phase change material at a constant
... Show MoreIn order to reduce the environmental pollution associated with the conventional energy sources and to achieve the increased global energy demand, alterative and renewable sustainable energy sources need to be developed. Microbial fuel cells (MFCs) represent a bio-electrochemical innovative technology for pollution control and a simultaneous sustainable energy production from biodegradable, reduced compounds. This study mainly considers the performance of continuous up flow dual-chambers MFC
fueled with actual domestic wastewater and bio-catalyzed with anaerobic aged sludge obtained from an aged septic tank. The performance of MFCs was mainly evaluated in terms of COD reductions and electrical power output. Results revealed that the C
As a result of the exacerbation of the problem of water pollution, research was directed towards studying the treatment using ceramic membranes, which proved to be highly effective in treating all water sources. The research aims to study the possibility of preparing a new type of ceramic membranes from Syrian zeolite that was not previously used in this field. In this research, ceramic membranes were prepared from Syrian raw zeolite in several stages. Zeolite sample was characterized, grinded, mixed with boric acid, pressed to form desks, treated thermally according to experiment program, finally coated with silver nanoparticles. Specifications of prepared membranes were determined according to reference methods, effectiveness of prepar
... Show More