Preferred Language
Articles
/
TRd-CZEBVTCNdQwCaJJM
Evaluation of PMMA joining to stainless steel 304 using pulsed Nd:YAG laser
...Show More Authors

This paper reports an experimental study of welding of dissimilar materials between transparent Polymethylmethacrylate (PMMA) and stainless steel 304 sheets using a pulsed mode Nd:YAG laser. The process was carried out for two cases; laser transmission joining (LTJ) and conduction joining (CJ). The former is achieved when the joint is irradiated from the polymer side and the latter when the joint is irradiated from the opposite side (metal side). The light and process parameters represented by the peak power (Pp), pulse duration (τ), pulse repetition rate (PRR), scanning speed (ν) and pulse shape have a significant effect on the joint strength (Fb), joint bead width (b), joint quality and appearance. The optimum parameters were determined according to joint quality, joint strength and bead width. The optimum results for the joint strength and bead width for both LTJ and CJ are 925 N, 7.25 mm and 495 N, 8 mm respectively using a rectangular pulse shape (RC). Further modeling studies were carried out based on two methods; one factor at a time method (OFM) and surface response methodology (RSM) method. RSM was used to determine optimum parameters for the experimental data building mathematical models for correlating parameters and responses (Fb and b) as well as to investigate how different parameters interact with each other and their effect on the weld quality.

Scopus Clarivate Crossref
View Publication
Publication Date
Sat Oct 01 2022
Journal Name
Structures
Behaviour and design of the ‘lockbolt’ demountable shear connector for sustainable steel-concrete composite structures
...Show More Authors

In order to promote sustainable steel-concrete composite structures, special shear connectors that can facilitate deconstruction are needed. A lockbolt demountable shear connector (LB-DSC), including a grout-filled steel tube embedded in the concrete slab and fastened to a geometrically compatible partial-thread bolt, which is bolted on the steel section's top flange of a composite beam, was proposed. The main drawback of previous similar demountable bolts is the sudden slip of the bolt inside its hole. This bolt has a locked conical seat lug that is secured inside a predrilled compatible counter-sunk hole in the steel section's flange to provide a non-slip bolt-flange connection. Deconstruction is achieved by demounting the tube from the t

... Show More
View Publication Preview PDF
Scopus (18)
Crossref (18)
Scopus Clarivate Crossref
Publication Date
Sat Aug 21 2021
Journal Name
Engineering, Technology & Applied Science Research
The Response of a Highly Skewed Steel I-Girder Bridge with Different Cross-Frame Connections
...Show More Authors

Braces in straight bridge systems improve the lateral-torsional buckling resistance of the girders by reducing the unbraced length, while in horizontally curved and skew bridges, the braces are primary structural elements for controlling deformations by engaging adjacent girders to act as a system to resist the potentially large forces and torques caused by the curved or skewed geometry of the bridge. The cross-frames are usually designed as torsional braces, which increase the overall strength and stiffness of the individual girders by creating a girder system that translates and rotates as a unit along the bracing lines. However, when they transmit the truck’s live load forces, they can produce fatigue cracks at their connection

... Show More
View Publication
Crossref (5)
Crossref
Publication Date
Fri May 01 2020
Journal Name
International Journal Of Geomate
METHODOLOGY FOR MONITORING THE FLEXURAL BEHAV-IOR OF STRUCTURAL CONCRETE MEMBERS WITH UNBONDED INTERNAL STEEL
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Mar 29 2023
Journal Name
Materials
Prediction of the Bending Strength of a Composite Steel Beam–Slab Member Filled with Recycled Concrete
...Show More Authors

This study investigated the structural behavior of a beam–slab member fabricated using a steel C-Purlins beam carrying a profile steel sheet slab covered by a dry board sheet filled with recycled aggregate concrete, called a CBPDS member. This concept was developed to reduce the cost and self-weight of the composite beam–slab system; it replaces the hot-rolled steel I-beam with a steel C-Purlins section, which is easier to fabricate and weighs less. For this purpose, six full-scale CBPDS specimens were tested under four-point static bending. This study investigated the effect of using double C-Purlins beams face-to-face as connected or separated sections and the effect of using concrete material that contains different recycled

... Show More
View Publication
Crossref (7)
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Engineering
Studying the Combination Effect of Additives and Micro Steel Fibers on Cracks of Self-Healing Concrete
...Show More Authors

In this study, the effect of the combination of micro steel fibers and additives (calcium hydroxide and sodium carbonate) on the size of cracks formation and healing them were investigated. This study aims to apply the use of self-healing phenomenon to repair cracks and to enhance the service life of the concrete structures. Micro steel fibers straight type were used in this research with 0.2% and 0.4% by volume of concrete. A weight of 20 and 30 kg/m3 of Ca(OH)2 and 2 and 3 kg/m3 of Na2CO3 were used as a partial cement replacement. The results confirm that the concrete cracks were significantly self-healed up to 30 days re-curing. Cracks width up to 0.2 mm were comp

... Show More
View Publication Preview PDF
Publication Date
Sat Feb 12 2022
Journal Name
Engineering, Technology & Applied Science Research
The Effect of Different Curing Temperatures on the Properties of Geopolymer Reinforced with Micro Steel Fibers
...Show More Authors

In this study, geopolymer mortar was designed in various experimental combinations employing 1% micro steel fibers and was subjected to different temperatures, according to the prior works of other researchers. The geopolymer mortar was developed using a variety of sustainable material proportions (fly ash and slag) to examine the influence of fibers on its strength. The fly ash weight percentage was 50%, 60%, and 70% by slag weight to study its effect on the geopolymer mortar's properties. The optimal ratio produced the most significant results when mixed at a 50:50 ratio of fly ash and slag with 1% micro steel fibers at curing temperature 240oC for 4 hours through two days. The compressive strength of the geopolymer mortar increas

... Show More
View Publication
Crossref (7)
Crossref
Publication Date
Tue Dec 26 2017
Journal Name
Al-khwarizmi Engineering Journal
Experimental Modeling and Optimization of Fatigue Life and Hardness of Carbon Steel CK35 under Dynamic Buckling
...Show More Authors

Abstract

 

The aim of this paper is to model and optimize the fatigue life and hardness of medium carbon steel CK35 subjected to dynamic buckling. Different ranges of shot peening time (STP) and critical points of slenderness ratio which is between the long and intermediate columns, as input factors, were used to obtain their influences on the fatigue life and hardness, as main responses. Experimental measurements of shot peening time and buckling were taken and analyzed using (DESIGN EXPERT 8) experimental design software which was used for modeling and optimization purposes. Mathematical models of responses were obtained and analyzed by ANOVA variance to verify the adequacy of the models. The resul

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 08 2018
Journal Name
International Journal Of Science And Research
effect of steel fiber type on compressive strength and modules of rupture on reactive powder concrete
...Show More Authors

Publication Date
Thu Jun 01 2023
Journal Name
Journal Of Engineering
On the Laser Micro Cutting: Experimentation and Mathematical Modeling based on RSM-CCD
...Show More Authors

The laser micro-cutting process is the most widely commonly applied machining process which can be applied to practically all metallic and non-metallic materials. While this had challenges in cutting quality criteria such as geometrical precision, surface quality and numerous others. This article investigates the laser micro-cutting of PEEK composite material using nano-fiber laser, due to their significant importunity and efficiency of laser in various manufacturing processes. Design of experiential tool based on Response Surface Methodology (RSM)-Central Composite Design (CCD) used to generate the statistical model. This method was employed to analysis the influence of parameters including laser speed,

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jan 23 2020
Journal Name
Iraqi Journal Of Laser
Fractional CO2 Laser Treatment of Mild Periorbital Wrinkles in Iraqi Patients
...Show More Authors

Background and Objective: Public demand for procedures to rejuvenate photodamaged facial skin have stimulated the use of fractional CO2 laser as a precise and predictable treatment modality. The purpose of this study was to assess the effect of fractional CO2 laser system for reducing periorbital rhytids.

Materials and Methods: twenty seven subjects with mild periocular wrinkles, and photoaged skin of the face were prospectively treated two to three times (according to clinical response) in the periorbital area with a fractional CO2 laser device equipped with a scanning hand piece. Improvements in eyelid wrinkles was evaluated clinically and photographically. Subjects also scored satisfaction and

... Show More
View Publication Preview PDF