There are many factors effect on the spread of infectious disease or control it,
some of these factors are (immigration and vaccination). The main objective of this
paper is to study the effect of those factors on the dynamical behavior of an SVIR
model. It is assumed that the disease is spread by contact between members of
populations individuals. While the recovered individuals gain permanent immunity
against the disease. The existence, uniqueness and boundedness of the solution of
this model are investigated. The local and global dynamical behaviors of the model
are studied. The local bifurcations and Hopf bifurcation of the model are
investigated. Finally, in order to confirm our obtained results and specify t
In this study a combination of two basics known methods used to daily prediction of solar insolation in Baghdad city, Iraq, for the first time, the harmonic and the classical linear regression analyses, thus it is called HARLIN model. The resulted prediction data compared with basics data for Baghdad city for two years (2010-2011), where the model showed a great success application in the accurate results, compared with the linear famous and well known model which is used the classical linear Angstrom equations with various formulations in many previous studies.
In this paper, we made comparison among different parametric ,nonparametric and semiparametric estimators for partial linear regression model users parametric represented by ols and nonparametric methods represented by cubic smoothing spline estimator and Nadaraya-Watson estimator, we study three nonparametric regression models and samples sizes n=40,60,100,variances used σ2=0.5,1,1.5 the results for the first model show that N.W estimator for partial linear regression model(PLM) is the best followed the cubic smoothing spline estimator for (PLM),and the results of the second and the third model show that the best estimator is C.S.S.followed by N.W estimator for (PLM) ,the
... Show MoreIn this paper, the general framework for calculating the stability of equilibria, Hopf bifurcation of a delayed prey-predator system with an SI type of disease in the prey population, is investigated. The impact of the incubation period delay on disease transmission utilizing a nonlinear incidence rate was taken into account. For the purpose of explaining the predation process, a modified Holling type II functional response was used. First, the existence, uniform boundedness, and positivity of the solutions of the considered model system, along with the behavior of equilibria and the existence of Hopf bifurcation, are studied. The critical values of the delay parameter for which stability switches and the nature of the Hopf bifurcat
... Show MoreIn this paper, the dynamical behavior of a three-dimensional fractional-order prey-predator model is investigated with Holling type III functional response and constant rate harvesting. It is assumed that the middle predator species consumes only the prey species, and the top predator species consumes only the middle predator species. We also prove the boundedness, the non-negativity, the uniqueness, and the existence of the solutions of the proposed model. Then, all possible equilibria are determined, and the dynamical behaviors of the proposed model around the equilibrium points are investigated. Finally, numerical simulations results are presented to confirm the theoretical results and to give a better understanding of the dynami
... Show MoreIn this paper a mathematical model that analytically as well as numerically
the flow of infection disease in a population is proposed and studied. It is
assumed that the disease divided the population into five classes: immature
susceptible individuals (S1) , mature individuals (S2 ) , infectious individual
(I ), removal individuals (R) and vaccine population (V) . The existence,
uniqueness and boundedness of the solution of the model are discussed. The
local and global stability of the model is studied. Finally the global dynamics of
the proposed model is studied numerically.
An ecological model consisting of prey-predator system involving the prey’s fear is proposed and studied. It is assumed that the predator species consumed the prey according to prey square root type of functional response. The existence, uniqueness and boundedness of the solution are examined. All the possible equilibrium points are determined. The stability analysis of these points is investigated along with the persistence of the system. The local bifurcation analysis is carried out. Finally, this paper is ended with a numerical simulation to understand the global dynamics of the system.
In this paper, we study the incorporation of the commensalism interaction and harvesting on the Lotka–Volterra food chain model. The system provides one commensal prey, one harvested prey, and two predators. A set of preliminary results in local bifurcation analysis around each equilibrium point for the proposed model is discussed, such as saddle-node, transcritical and pitchfork. Some numerical analysis to confirm the accruing of local bifurcation is illustrated. To back up the conclusions of the mathematical study, a numerical simulation of the model is carried out with the help of the MATLAB program. It can be concluded that the system's coexistence can be achieved as long as the harvesting rate on the second prey population is
... Show MoreThe researcher studies and explains the content of some pictures that are published in al-Mada newspaper. The research is important as it deals with a topic that has a relation with visual culture and its role to transfer the press letter to the audience. The researcher finds that cartoonist exposed the security services through important people who have a major role in state policy and reveals the level of corruption and the weak treatments for this phenomenon and its reflection on the whole society and individuals. In addition to that, cartoonists try to encourage the public for going on the peaceful demonstrations since it is a good tool to make pressure on the government to punish the corrupts.