In this research, Argon gas was used to generate atmospheric plasma in the manufacture of platinum nanomaterials, to study the resultant plasma spectrum and to calculate the cellular toxicity of those manufactured nanomaterials. This research is keen on the generation of nonthermal atmospheric pressure plasma using aqueous platinum salts (H2PtCl6 6H2O) with different concentrations and exposure of cold plasma with a different time period used to produce platinum nanoparticles, to ensure typical preparation of nanoparticles. Visible UV and X-rays were performed for this purpose, and the diameter of the system probe was (1[Formula: see text]mm) with the Argon gas flow of 2.5[Formula: see text]min/L to prepare the platinum nanoparticles, and spectroscopic study of plasma parameter including, electron temperature, electron density, Debye length and plasma frequency, were computed using spectral analysis techniques. The effect of nanoparticles on natural lymphocytes was studied to calculate cytotoxicity and the greatest proportion was at the concentration of 100% nanoparticle platinum is 37.4%. The study results revealed that cold in the atmosphere is a promising technology when used in the production of nanoparticle materials which can be used for many industrial and medical applications.
Purpose: To use the L25 Taguchi orthogonal array for optimizing the three main solvothermal parameters that affect the synthesis of metal-organic frameworks-5 (MOF-5). Methods: The L25 Taguchi methodology was used to study various parameters that affect the degree of crystallinity (DOC) of MOF-5. The parameters comprised temperature of synthesis, duration of synthesis, and ratio of the solvent, N,N-dimethyl formamide (DMF) to reactants. For each parameter, the volume of DMF was varied while keeping the weight of reactants constant. The weights of 1,4-benzodicarboxylate (BDC) and Zn(NO3)2.6H2O used were 0.390 g and 2.166 g, respectively. For each parameter investigated, five different levels were used. The MOF-5 samples were synthesi
... Show MoreA simple, economic, rapid, reliable, and stability-indicating high-performance liquid chromatography (HPLC) method has been developed and validated for the simultaneous determination of paracetamol (PCM) and caffeine (CF) in solid dosage form. The chromatographic separations were achieved with a Waters Symmetry® C18 column (5 μm, 4.6 × 150 mm), using a mixture of methanol and water (40:60, v/v) as a mobile phase, under isocratic elution mode with a flow rate of 0.8 mL/min, and ultraviolet (UV) detection was set at 264 nm. The oven temperature for the column was set and maintained at 35 °C. The method was validated according to International Conference on Harmonization (ICH) guidelines, and it demonstrated excellent linearity, wi
... Show MoreCUPPER(||)AND MERCURY (||)Complexes WITH SCHIFF BASE LIGAND FROM BENZIDIN WITH ISATIN AND BENZOIN:SYNTHESIS,SPECTRAL CHARACTERIZATION, THERMAL STUDIES AND BIOLOGICAL ACTIVITIES
A reliable and environmental analytical method was developed for the direct determination of tetracycline using flow injection analysis (FIA) and batch procedures with spectrophotometric detection. The developed method is based on the reaction between a chromogenic reagent (vanadium (III) solution) and tetracycline at room temperature and in a neutral medium, resulting in the formation of an intense brown product that shows maximum absorption at 395 nm. The analytical conditions were improved by the application of experimental design. The proposed method was successfully used to analyze samples of commercial medications and verified throughout the concentration ranges of 25–250 and 3–25 µg/mL for both FIA and batch procedures, respecti
... Show MoreWater samples from a variety of sources in Kelantan, Malaysia (lakes, ponds, rivers, ditches, fish farms, and sewage) were screened for the presence of bacteriophages infecting
Background: Although mammography is a powerful screening tool in detection of early breast cancer, it is imperfect, particularly for women with dense breast, which have a higher risk to develop cancer and decrease the sensitivity of mammogram, Automated breast ultrasound is a recently introduced ultrasonography technique, developed with the purpose to standardize breast ultrasonography and overcome some limitations of handheld ultrasound, this study aims to evaluate the diagnostic efficacy of Automated breast ultrasound and compare it with handheld ultrasound in the detection and characterization of breast lesions in women with dense breasts. Objectives: To evaluate the diagnostic efficacy of Automated breast ultrasound and compare
... Show MoreBackground: Although mammography is a powerful screening tool in detection of early breast cancer, it is imperfect, particularly for women with dense breast, which have a higher risk to develop cancer and decrease the sensitivity of mammogram, Automated breast ultrasound is a recently introduced ultrasonography technique, developed with the purpose to standardize breast ultrasonography and overcome some limitations of handheld ultrasound, this study aims to evaluate the diagnostic efficacy of Automated breast ultrasound and compare it with handheld ultrasound in the detection and characterization of breast lesions in women with dense breasts.
Objectives:<
... Show MoreThe second half of the last century witnessed a great scientific revolution that was able to bring about wide changes in various fields, including the field of physical education, which plays a fundamental role in the process of change for the better, and which knocked all the doors of modern science in various aspects and from this perspective we see that students have different capabilities And interests and motives, which require providing a differentiated education, and this depends on the necessity of knowing each student and on the school’s ability to know appropriate strategies for teaching each student so there is no single way to teach so the research problem comes in experimenting with an educational method that works on
... Show More