One study whose importance has significantly grown in recent years is lip-reading, particularly with the widespread of using deep learning techniques. Lip reading is essential for speech recognition in noisy environments or for those with hearing impairments. It refers to recognizing spoken sentences using visual information acquired from lip movements. Also, the lip area, especially for males, suffers from several problems, such as the mouth area containing the mustache and beard, which may cover the lip area. This paper proposes an automatic lip-reading system to recognize and classify short English sentences spoken by speakers using deep learning networks. The input video extracts frames and each frame is passed to the Viola-Jones to detect the face area. Then 68 landmarks of the facial area are determined, and the landmarks from 48 to 68 represent the lip area extracted based on building a binary mask. Then, the contrast is enhanced to improve the quality of the lip image by applying contrast adjustment. Finally, sentences are classified using two deep learning models, the first is AlexNet, and the second is VGG-16 Net. The database consists of 39 participants (32 males and 7 females). Each participant repeats the short sentences five times. The outcomes demonstrate the accuracy rate of AlexNet is 90.00%, whereas the accuracy rate for VGG-16 Net is 82.34%. We concluded that AlexNet performs better for classifying short sentences than VGG-16 Net.
Computer vision seeks to mimic the human visual system and plays an essential role in artificial intelligence. It is based on different signal reprocessing techniques; therefore, developing efficient techniques becomes essential to achieving fast and reliable processing. Various signal preprocessing operations have been used for computer vision, including smoothing techniques, signal analyzing, resizing, sharpening, and enhancement, to reduce reluctant falsifications, segmentation, and image feature improvement. For example, to reduce the noise in a disturbed signal, smoothing kernels can be effectively used. This is achievedby convolving the distributed signal with smoothing kernels. In addition, orthogonal moments (OMs) are a cruc
... Show MoreThis study investigated the effect of using brainstorming as a teaching technique on the students’ performance in writing different kinds of essays and self regulation among the secondary students. The total population of this study, consisted of (51) female students of the 5th Secondary grade in Al –kawarzmi School in Erbil during the academic year 2015-2016. The chosen sample consisted of 40 female students, has been divided into two groups. Each one consists of (20) students to represent the experimental group and the control one. Brainstorming technique is used to teach the experimental group, and the conventional method is used to teach the control group. The study inst
... Show MoreThe research aimed to identify “The impact of an instructional-learning design based on the brain- compatible model in systemic thinking among first intermediate grade female students in Mathematics”, in the day schools of the second Karkh Educational directorate.In order to achieve the research objective, the following null hypothesis was formulated:There is no statistically significant difference at the significance level (0.05) among the average scores of the experimental group students who will be taught by applying an (instructional- learning) design based to on the brain–compatible model and the average scores of the control group students who will be taught through the traditional method in the systemic thinking test.The resear
... Show MoreAbstract: The aim of the current research is to identify (the relationship between deep understanding skills and mathematical modeling among fifth grade students) the research sample consisted of (411) male and female students of the fifth grade of biology distributed over the General Directorates of Education in Baghdad / Al-Rusafa / 2 / and Al-Karkh / 1 /, and two research tools were built: 1- A test of deep understanding skills, consisting of (20) test items and a scale for two skills. 2- The second test consists of (24) test items distributed among (18) essay items and (6) objective items. The psychometric properties of validity, stability, discriminatory strength, and effectiveness of alternatives were verified for the two tests fo
... Show MoreBackground/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the
... Show MoreBackground: Deep vein thrombosis is a multi causal disease and its one of most common venous disorder, but only one quarter of the patients who have signs and symptoms of a clot in the vein actually have thrombosis and need treatment .The disease can be difficult to diagnose. Venous ultrasound in combination with clinical finding is accurate for venous thromboembolism, its costly because a large number of patients with suspicious signs and symptoms. Venography still the gold standard for venous thromboembolism but it is invasive. The D-dimer increasingly is being seen as valuable tool rolling out venous thromboembolism and sparing low risk patients for further workup.Objectives: this study has designed the role of D-dimer to confirm diag
... Show MoreAn Optimal Algorithm for HTML Page Building Process
As they are the smallest functional parts of the muscle, motor units (MUs) are considered as the basic building blocks of the neuromuscular system. Monitoring MU recruitment, de-recruitment, and firing rate (by either invasive or surface techniques) leads to the understanding of motor control strategies and of their pathological alterations. EMG signal decomposition is the process of identification and classification of individual motor unit action potentials (MUAPs) in the interference pattern detected with either intramuscular or surface electrodes. Signal processing techniques were used in EMG signal decomposition to understand fundamental and physiological issues. Many techniques have been developed to decompose intramuscularly detec
... Show More