In this article, the nonlinear problem of Jeffery-Hamel flow has been solved analytically and numerically by using reliable iterative and numerical methods. The approximate solutions obtained by using the Daftardar-Jafari method namely (DJM), Temimi-Ansari method namely (TAM) and Banach contraction method namely (BCM). The obtained solutions are discussed numerically, in comparison with other numerical solutions obtained from the fourth order Runge-Kutta (RK4), Euler and previous analytic methods available in literature. In addition, the convergence of the proposed methods is given based on the Banach fixed point theorem. The results reveal that the presented methods are reliable, effective and applicable to solve other nonlinear problems. Our computational works have been done by using the computer algebra system MATHEMATICA®10 to evaluate the terms in the iterative processes.
Throughout this paper R represents commutative ring with identity, and M is a unitary left R-module. The purpose of this paper is to study a new concept, (up to our knowledge), named a semi-extending modules, as generalization of extending modules, where an Rmodule M is called semi-extending if every sub module of M is a semi-essential in a direct summand of M. Various properties of semi-extending module are considered. Moreover, we investigate the relationships between semi-extending modules and other related concepts, such as CLS-modules and FI- extending modules.
In this paper an improved weighted 0-1 knapsack method (WKM) is proposed to optimize the resource allocation process when the sum of items' weight exceeds the knapsack total capacity .The improved method depends on a modified weight for each item to ensure the allocation of the required resources for all the involved items. The results of the improved WKM are compared to the traditional 0-1 Knapsack Problem (KP). The proposed method dominates on the other one in term of the total optimal solution value of the knapsack .
Simple method has been used to determine the absence of heavy metals in an aqueous solution. Fluorescein was used as the base colorimetric materialThis was doped with CuCl2 and the final solution showeda clear change in color. This change was correlated with the change in both pH and electrical conductivity of the solution. The optical property as an obvious change of the spectra was observed. Therefore, this simple method could be proposed as a method to detectheavy metals in any solution.
The objective of the current research is to find an optimum design of hybrid laminated moderate thick composite plates with static constraint. The stacking sequence and ply angle is required for optimization to achieve minimum deflection for hybrid laminated composite plates consist of glass and carbon long fibers reinforcements that impeded in epoxy matrix with known plates dimension and loading. The analysis of plate is by adopting the first-order shear deformation theory and using Navier's solution with Genetic Algorithm to approach the current objective. A program written with MATLAB to find best stacking sequence and ply angles that give minimum deflection, and the results comparing with ANSYS.
The main factors that make it possible to get the corrosion of reinforcing steel in concrete are chloride ions and the absorption of carbon dioxide from the environment, and each of them works with a mechanism which destroys the stable immunity of rebar in the concrete. In this work the effect of carbon dioxide content in the artificial concrete solution on the corrosion behavior of carbon steel reinforcing bar (CSRB) was studied, potentiostatically using CO2 stream gas at 6 level of concentrations; 0.03 to 2.0 weight percent, and the effect of rising electrolyte temperature was also followed in the range 20 to 50ᴼ C. Tafel plots and cyclic polarization procedures were obeyed to investigate the c
... Show MoreThe corrosion protection of low carbon steel in 2.5 M HCl solution by kiwi juice was studied at different temperatures and immersion times by weight loss technique. To study the determination of the optimum conditions from statistical design in evaluation of a corrosion inhibitor, three variables, were considered as the most dominant variables. These variables are: temperature, inhibitor concentration (extracted kiwi juice) and immersion time at static conditions.
These three variables are manipulated through the experimental work using central composite rotatable Box – Wilson Experimental Design (BWED) where second order polynomial model was proposed to correlate the studied variables with the corrosion rate o
... Show MoreThe aim of this research is to study the factors affecting drag coefficient (C d ) in
non-Newtonian fluids which are the rheological properties ,concentrations of non-
Newtonian fluids, particle shape, size and the density difference between particle and
fluid .Also this study shows drag coefficient (C d ) and particle Reynolds' number (Re
P ) relationship and the effect of rheological properties on this relationship.
An experimental apparatus was designed and built, which consists of Perspex pipe
of length of 160 cm. and inside diameter of 7.8 cm. to calculate the settling velocity,
also electronic circuit was designed to calculate the falling time of particles through
fluid.
Two types of solid particles were
In this paper, we introduce new conditions to prove that the existence and boundedness of the solution by convergent sequences and convergent series. The theorem of Krasnoselskii, Lebesgue’s dominated convergence theorem and fixed point theorem are used to get some sufficient conditions for the existence of solutions. Furthermore, we get sufficient conditions to guarantee the oscillatory property for all solutions in this class of equations. An illustrative example is included as an application to the main results.
This article is devoted to presenting results on invariant approximations over a non-star-shsped weakly compact subset of a complete modular space by introduced a new notion called S-star-shaped with center f: if be a mapping and , . Then the existence of common invariant best approximation is proved for Banach operator pair of mappings by combined the hypotheses with Opial’s condition or demi-closeness condition