In this article, the nonlinear problem of Jeffery-Hamel flow has been solved analytically and numerically by using reliable iterative and numerical methods. The approximate solutions obtained by using the Daftardar-Jafari method namely (DJM), Temimi-Ansari method namely (TAM) and Banach contraction method namely (BCM). The obtained solutions are discussed numerically, in comparison with other numerical solutions obtained from the fourth order Runge-Kutta (RK4), Euler and previous analytic methods available in literature. In addition, the convergence of the proposed methods is given based on the Banach fixed point theorem. The results reveal that the presented methods are reliable, effective and applicable to solve other nonlinear problems. Our computational works have been done by using the computer algebra system MATHEMATICA®10 to evaluate the terms in the iterative processes.
This article deals with the approximate algorithm for two dimensional multi-space fractional bioheat equations (M-SFBHE). The application of the collection method will be expanding for presenting a numerical technique for solving M-SFBHE based on “shifted Jacobi-Gauss-Labatto polynomials” (SJ-GL-Ps) in the matrix form. The Caputo formula has been utilized to approximate the fractional derivative and to demonstrate its usefulness and accuracy, the proposed methodology was applied in two examples. The numerical results revealed that the used approach is very effective and gives high accuracy and good convergence.
In this paper, a literature survey was introduced to study of enhancing the hazy images , because most of the images captured in outdoor images have low contrast, color distortion, and limited visual because the weather conditions such as haze and that leads to decrease the quality of images capture. This study is of great importance in many applications such as surveillance, detection, remote sensing, aerial image, recognition, radar, etc. The published researches on haze removal are divided into several divisions, some of which depend on enhancement the image, some of which depend on the physical model of deformation, and some of them depend on the number of images used and are divided into single-image and multiple images dehazing model
... Show MoreWe propose a new object tracking model for two degrees of freedom mechanism. Our model uses a reverse projection from a camera plane to a world plane. Here, the model takes advantage of optic flow technique by re-projecting the flow vectors from the image space into world space. A pan-tilt (PT) mounting system is used to verify the performance of our model and maintain the tracked object within a region of interest (ROI). This system contains two servo motors to enable a webcam rotating along PT axes. The PT rotation angles are estimated based on a rigid transformation of the the optic flow vectors in which an idealized translation matrix followed by two rotational matrices around PT axes are used. Our model was tested and evaluated
... Show MoreResearch Hypothesis from the fact that kicks off the effect that agricultural production in Iraq plays an important role in overcoming the food problem and achieving food security, but he became far far away from the provision of sufficient quantities of food products and then securing the Iraqi consumer food basket by the challenges faced by the agricultural sector.
To prove the hypothesis research in its structure in three axes came, the first axis eating historical significance to the subject of food over time periods as well as to clarify the concept of food security, and the second axis touched on the most important challenges facing the agricultural sector in Iraq and prevent the achievement of food requirements for members of
This paper presents new modification of HPM to solve system of 3 rd order PDEs with initial condition, for finding suitable accurate solutions in a wider domain.
In this paper generalized spline method is used for solving linear system of fractional integro-differential equation approximately. The suggested method reduces the system to system of linear algebraic equations. Different orders of fractional derivative for test example is given in this paper to show the accuracy and applicability of the presented method.
In this research, our aim is to study the optimal control problem (OCP) for triple nonlinear elliptic boundary value problem (TNLEBVP). The Mint-Browder theorem is used to prove the existence and uniqueness theorem of the solution of the state vector for fixed control vector. The existence theorem for the triple continuous classical optimal control vector (TCCOCV) related to the TNLEBVP is also proved. After studying the existence of a unique solution for the triple adjoint equations (TAEqs) related to the triple of the state equations, we derive The Fréchet derivative (FD) of the cost function using Hamiltonian function. Then the theorems of necessity conditions and the sufficient condition for optimality of
... Show More