Nowadays, the development of laser devices in the medical field has become large and highly efficient compared to regular surgery. The aim of this work is to design a laser technology system to remove and break up blood clots in the human body, especially in the sensitive areas that pose a threat to his life. This system is characterized by being environmentally friendly, has no side effects on the human body, and is economically inexpensive. The program of Matlab 2019 was used to create an executable program to simulate a pulse system for a new model which is Free Electron Laser (FEL) in any range of wavelength and in this work it is in the ultraviolet range and the electrons energy about 450 MeV and wavelength equal 22.5 nm to remove these clots by breaking the bonds connecting the clots components. The energy, which gives this wavelength is among the short wavelengths that approximate in its action from the magnetic resonance. This program consists of Specific parameters which a simulation to obtain the best values for wavelength, exposure time and pulse energy.
A computer theoretical s1udy has been carried out in field of opto - clcctroniccs, to design an electron gun using the space charge effect.
The distribution of axial potential upon the two -electrode
immersion lens of (L=l4mm) has been carried out using Poisons equation and the tinite clement method; knowing the first 11nd second derivation of the axial potential and the solution of paraxial ray equation, the optical prop
... Show MoreThe calculation. of the nuclear. charge. density. distributions. ρ(r) and root. mean. square. radius.( RMS ) by elastic. electron. scattering. of medium. mass. nuclei. such. as (90Zr, 92Mo) based. on the model. of the modified. shell. and the use of the probability. of occupation. on the surface. orbits. of level 2p, 2s eroding. shells. and 1g gaining. shells. The occupation probabilities of these states differ noticeably from the predictions of the SSM. We have found. an improvement. in the determination. of ground. charge. density. and this improvement. allow. more precise. identification. of (CDD) between. (92Mo- 90Zr) to illustrate the influence of the extra
... Show MoreThe A2?u-X1?g+ emission band system of 7LiH1 molecule has been calculated for Lambda doubling. The relation between wave number ?p , ?Q , ?R conducted the energies of the state of rotation F (J), and (J + 1) with rotational quantum number J, respectively, of 7LiH1 molecule for statehood A2?u using the rotation, fixed vibrational states of both the ground and raised crossovers vibrational against ???= 0 to V ' = 0-4using rotational levels J = 0 to J = 20 have found.
Ovako Working Postures Analyzing System (OWAS) is a widely used method for studying awkward working postures in workplaces. This study with OWAS, analyzed working postures for manual material handling of laminations at stacking workstation for water pump assembly line in Electrical Industrial Company (EICO) / Baghdad. A computer program, WinOWAS, was used for the study. In real life workstation was found that more than 26% of the working postures observed were classified as either AC2 (slightly harmful), AC3 (distinctly harmful). Postures that needed to be corrected soon (AC3) and corresponding tasks, were identified. The most stressful tasks observed were grasping, handling, and positioning of the laminations from workers. The construct
... Show MoreThe goal of this work is to check the presence of PNS (photon number splitting) attack in quantum cryptography system based on BB84 protocol, and to get a maximum secure key length as possible. This was achieved by randomly interleaving decoy states with mean photon numbers of 5.38, 1.588 and 0.48 between the signal states with mean photon numbers of 2.69, 0.794 and 0.24. The average length for a secure key obtained from our system discarding the cases with Eavesdropping was equal to 125 with 20 % decoy states and 82 with 50% decoy states for mean photon number of 0.794 for signal states and 1.588 for decoy states.
The minimum approaches distance of probing electrons in scanning electron microscope has investigated in accordance to mirror effect phenomenon. The analytical expression for such distance is decomposed using the binomial expansion. With aid of resulted expansion, the distribution of trapped electrons within the sample surface has explored. Results have shown that trapped electron distributes with various forms rather an individual one. The domination of any shape is mainly depend on the minimum approaches distance of probing electrons
The charge density distributions (CDD) and the elastic electron
scattering form factors F(q) of the ground state for some even mass
nuclei in the 2s 1d shell ( Ne Mg Si 20 24 28 , , and S 32 ) nuclei have
been calculated based on the use of occupation numbers of the states
and the single particle wave functions of the harmonic oscillator
potential with size parameters chosen to reproduce the observed root
mean square charge radii for all considered nuclei. It is found that
introducing additional parameters, namely 1 , and , 2 which
reflect the difference of the occupation numbers of the states from
the prediction of the simple shell model leads to a remarkable
agreement between the calculated an
The ground state proton, neutron and matter densities and
corresponding root mean square radii of unstable proton-rich 17Ne
and 27P exotic nuclei are studied via the framework of the twofrequency
shell model. The single particle harmonic oscillator wave
functions are used in this model with two different oscillator size
parameters core b and halo , b the former for the core (inner) orbits
whereas the latter for the halo (outer) orbits. Shell model calculations
for core nucleons and for outer (halo) nucleons in exotic nuclei are
performed individually via the computer code OXBASH. Halo
structure of 17Ne and 27P nuclei is confirmed. It is found that the
structure of 17Ne and 27P nuclei have 2
5 / 2 (1d ) an
The binary cluster model (BCM) and the two-frequency shell model (TFSM) have been used to study the ground state matter densities of neutron-rich 6He and 11Li halo nuclei. Calculations show that both models provide a good description on the matter density distribution of above nuclei. The root-mean square (rms) proton, neutron and matter radii of these halo nuclei obtained by TFSM have been successfully obtained. The elastic charge form factors for these halo nuclei are studied through combining the charge density distribution obtained by TFSM with the plane wave Born approximation (PWBA).