Ultrasound has been used as a diagnostic modality for many intraocular diseases, due its safety, low cost, real time and wide availability. Unfortunately, ultrasound images suffer from speckle artifact that are tissue dependent. In this work, we will offer a method to reduce speckle noise and improve ultrasound image to raise the human diagnostic performance. This method combined undecimated wavelet transform with a wavelet coefficient mapping function: where UDWT used to eliminate the noise and a wavelet coefficient mapping function used to enhance the contrast of denoised images obtained from the first component. This methods can be used not only as a means for improving visual quality of medical images but also as a preprocessing module for computer-aided detection/diagnosis systems to improve the performance of screening and detecting regions of interest in images. The proposed method is experimentally evaluated via 60 ultrasound images of eye. It is demonstrated that the proposed method can further improve the image quality of ocular ultrasound; the results reveal the effectiveness and superiority of the proposed method.
This research deals with the use of a number of statistical methods, such as the kernel method, watershed, histogram, and cubic spline, to improve the contrast of digital images. The results obtained according to the RSME and NCC standards have proven that the spline method is the most accurate in the results compared to other statistical methods.
This research deals with the use of a number of statistical methods, such as the kernel method, watershed, histogram and cubic spline, to improve the contrast of digital images. The results obtained according to the RSME and NCC standards have proven that the spline method is the most accurate in the results compared to other statistical methods
Most recognition system of human facial emotions are assessed solely on accuracy, even if other performance criteria are also thought to be important in the evaluation process such as sensitivity, precision, F-measure, and G-mean. Moreover, the most common problem that must be resolved in face emotion recognition systems is the feature extraction methods, which is comparable to traditional manual feature extraction methods. This traditional method is not able to extract features efficiently. In other words, there are redundant amount of features which are considered not significant, which affect the classification performance. In this work, a new system to recognize human facial emotions from images is proposed. The HOG (Histograms of Or
... Show MoreA content-based image retrieval (CBIR) is a technique used to retrieve images from an image database. However, the CBIR process suffers from less accuracy to retrieve images from an extensive image database and ensure the privacy of images. This paper aims to address the issues of accuracy utilizing deep learning techniques as the CNN method. Also, it provides the necessary privacy for images using fully homomorphic encryption methods by Cheon, Kim, Kim, and Song (CKKS). To achieve these aims, a system has been proposed, namely RCNN_CKKS, that includes two parts. The first part (offline processing) extracts automated high-level features based on a flatting layer in a convolutional neural network (CNN) and then stores these features in a
... Show MoreLK Abood, RA Ali, M Maliki, International Journal of Science and Research, 2015 - Cited by 2
Background: Tap waters play an important role in fulfilling the people needs for drinking and domestic purposes. Contaminate the tap water with different pollutants has become an issue of great concern for 90% of people who are depended on the tap water as the main source of drinking. Pollutants can make their way easily into the delivering pipes which suffer from the leaking resulting in decreasing the quality of water. Objective: Therefore, assess the water quality for drinking purpose by calculating the water quality index is an important tool to ascertain whether the water is suitable for human consumption or not. Methods: In the present work, the water quality of the Al-Salam, western region of Baghdad city, Iraq was investigated for 7
... Show MoreMass transfer was studied using a rotating cylinder electrode with different lengths of legs acting as turbulence promoters. Two types of rotating cylinder ,made of brass, were examined : an enhanced cylinder one, with four rectangular extensions 10 mm long, 10 mm wide, and 1mm thick, and an enhanced cylinder two with four longitudes 30 mm long,10 mm wide, and 1mm thick. The best performance was obtained for enhanced cylinder two at low rotation speeds while enhanced cylinder one was realized at high rotation speeds. The mass transfer enhancement as compared with a normal rotating cylinder electrode, devoid of promoters, is 53% or 58% higher. The enhancement percentage decreased as rotation speeds increased further, since, seemingly, ful
... Show MoreCO2 geo-storage efficiency is strongly influenced by the wettability of the CO2-brine-mineral system. With decreasing water-wetness, both, structural and residual trapping capacities are substantially reduced. This constitutes a serious limitation for CO2 storage particularly in oil-wet formations (which are CO2-wet). To overcome this, we treated CO2-wet calcite surfaces with nanofluids (nanoparticles dispersed in base fluid) and found that the systems turned strongly water-wet state, indicating a significant wettability alteration and thus a drastic improvement in storage potential. We thus conclude that CO2 storage capacity can be significantly enhanced by nanofluid priming.
Abstract
Hexapod robot is a flexible mechanical robot with six legs. It has the ability to walk over terrain. The hexapod robot look likes the insect so it has the same gaits. These gaits are tripod, wave and ripple gaits. Hexapod robot needs to stay statically stable at all the times during each gait in order not to fall with three or more legs continuously contacts with the ground. The safety static stability walking is called (the stability margin). In this paper, the forward and inverse kinematics are derived for each hexapod’s leg in order to simulate the hexapod robot model walking using MATLAB R2010a for all gaits and the geometry in order to derive the equations of the sub-constraint workspaces for each
... Show More