Specific microorganisms can produce bacterial nanocellulose (BNC), with acetic acid bacteria (AAB) being the most active producer. The family Acetobacteraceae includes the obligate aerobic, motile acetic acid bacteria. The BNC has attracted a lot of interest across a wide range of industries, including pharmaceuticals, due to its flexible characteristics, properties, and advantages. The present study was conducted to purify and characterize BNC produced from AAB isolated from apple vinegar. Bacterial nanocellulose was synthesized using a natural date palm liquid medium at pH 6 at 30°C for 8–10 days. The bacterial cellulose produced was then purified using a technique involving 0.1 M sodium hydroxide. To ascertain the surface morphology, size, and form of the BNC membrane, three techniques were used for characterization: X-ray diffraction (XRD), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The results of the XRD analysis confirmed that the BNC particle size ranged between approximately 17.10 and 70.33 nm, while the AFM analysis revealed that the mean diameter of these nanofibers was 26.58 nm. The TEM images clearly showed that the diameters of the BNC fibers ranged between approximately 26-66 nm. The findings of this study reveal that the characterization of the purified BNC using the XRD, AFM, and TEM analyses showed the presence of fibers with varying nanoscale diameters.
This study investigates the treatment of used lubricating oils from AL-Mussaib Gas Power Station Company-Iraq, which was treated with different extractive solvents (heptane and 2-propanol). The performance activity of these solvents in the extraction process was examined and evaluated experimentally. Operating parameters were solvent to oil ratios of (1:2, 1:4, 1:6, and 1:8), mixing time (20, 35, 50, and 65 min), temperatures (30, 40, 50, and 60 ºC), and mixing speed (500 rpm). These parameters were studied and analyzed. The quality is determined by the measuring and assessment of important characteristics specially viscosity, viscosity index, specific gravity, pour point, flash point, and ash content. The results confirm that the solve
... Show MoreIn this research, a mathematical model of tumor treatment by radiotherapy is studied and a new modification for the model is proposed as well as introducing the check for the suggested modification. Also the stability of the modified model is analyzed in the last section.
This work deals with thermal cracking of slack wax produced as a byproduct from solvent dewaxing process of medium lubricating oil fraction in AL-Dura refinery. The thermal cracking process was carried out at a temperature ranges 480-540 ºC and atmospheric pressure. The liquid hourly space velocity (LHSV) for thermal cracking was varied between 1.0-2.5 . It was found that the conversion increased (61 - 83) with the increasing of reaction temperature (480 - 540) and decreased (83 - 63) with the increasing of liquid hourly space velocity (1.0 - 2.5).
The maximum gasoline yield obtained by thermal cracking process (48.52 wt. % of feed) was obtained at 500 ºC and liquid hour space velocity 1 . The obtaining liquid product at the best op
Background. Nanocoating of biomedical materials may be considered the most essential developing field recently, primarily directed at improving their tribological behaviors that enhance their performance and durability. In orthodontics, as in many medical fields, friction reduction (by nanocoatings) among different orthodontic components is considered a substantial milestone in the development of biomedical technology that reduces orthodontic treatment time. The objective of the current research was to explore the tribological behavior, namely, friction of nanocoated thin layer by tantalum (Ta), niobium (Nb), and vanadium (V) manufactured using plasma sputtering at 1, 2, and 3 hours on substrates made of 316L stainless steel (SS),
... Show MoreGrowth of Penicillium expansum, an ubiquitous mould found in stored fruit globallyt, was significantly restricted by exposure to 48 h cell-free supernatant of two strains of Lactobacillus plantarum (p < 0.001). In addition, the biotransformation of patulin, a toxic secondary metabolite formed by P. expansum, on exposure to L. plantarum cells and cell-free supernatant highlights the potential of this GRAS microbe as a biocontrol agent. Up to 80% of patulin was biotransformed following a 4 h incubation with 1010 cells ml−1 (37 °C) forming E- and Z-ascladiol. The formation of these products was more pronounced at elevated pH and cell density. Exposure to cell free supernatant or sonicated cells resulted in complete patulin biotransformation
... Show MoreDrug resistance is a hot topic issue in cancer research and therapy. Although cancer therapy including radiotherapy and anti‐cancer drugs can kill malignant cells within the tumor, cancer cells can develop a wide range of mechanisms to resist the toxic effects of anti‐cancer agents. Cancer cells may provide some mechanisms to resist oxidative stress and escape from apoptosis and attack by the immune system. Furthermore, cancer cells may resist senescence, pyroptosis, ferroptosis, necroptosis, and autophagic cell death by modulating several critical genes. The development of these mechanisms leads to resistance to anti‐cancer drugs and also radiotherapy. Resistance to therapy can increase mortal
single and binary competitive sorption of phenol and p-nitrophenol onto clay modified with
quaternary ammonium (Hexadecyltrimethyl ammonium ) was investigated to obtain the
adsorption isotherms constants for each solutes. The modified clay was prepared from
blending of local bentonite with quaternary ammonium . The organoclay was characterized
by cation exchange capacity. and surface area. The results show that paranitrophenol is
being adsorbed faster than phenol . The experimental data for each solute was fitted well with
the Freundlich isotherm model for single solute and with the combination of Freundlich-
Langmuier model for binary system .
The Quantitative high-resolution planktonic foraminiferal analysis of the subsurface section in three selected wells in the Ajeel Oil Field (Aj-8, Aj-12, and Aj-15) in Tikrit Governorate, Central Iraq has revealed that Shiranish Formation deposited in Late Campanian- Latest Maastrichtian age. This formation consists mainly of marly and marly limestone yielding diverse planktonic foraminiferal assemblages and calcareous benthic foraminifera, with a total of 46 species that belong to 23 genera, Three zones and four subzones, which cover the Late Campanian to the Latest Maastrichtian, were identified based on the recorded planktonic foraminifera and their ranges. They are as follows:1. Globotruncana aegyptiaca Zone that dated to be Lat
... Show More