In this paper, the speed control of the real DC motor is experimentally investigated using nonlinear PID neural network controller. As a simple and fast tuning algorithm, two optimization techniques are used; trial and error method and particle swarm optimization PSO algorithm in order to tune the nonlinear PID neural controller's parameters and to find best speed response of the DC motor. To save time in the real system, a Matlab simulation package is used to carry out these algorithms to tune and find the best values of the nonlinear PID parameters. Then these parameters are used in the designed real time nonlinear PID controller system based on LabVIEW package. Simulation and experimental results are compared with each other and showe
... Show Moreالخلاصة: الحكة اليوريمية لدى مرضى غسيل الكلى يؤثر على أكثر من 40٪ من المرضى. وربما ترتبط الحكة المستمرة بمستويات عالية من الإنترلوكين 31. الاهداف: النظر إلى مستويات مصل إنترلوكين 31 لدى مرضى غسيل الكلى المصابين بمرض الكلى في المرحلة النهائية، سواء مع أو بدون حكة يوريمية. النتائج: لم يكن مستوى المصل [الوسيط (] لـ IL-31 في المرضى الذين يعانون من الحكة اليوريميةأو بدون حكة في عينة مصل ما قبل غسيل الكلى مختلفًا بشكل م
... Show MoreRestoration of degraded lands by adoption of recommended conservation management practices can rehabilitate watersheds and lead to improving soil and water quality. The objective was to evaluate the effects of grass buffers (GBs), biomass crops (BCs), grass waterways (GWWs), agroforestry buffers (ABs), landscape positions, and distance from tree base for AB treatment on soil quality compared with row crop (RC) (corn [
This paper presents a method to classify colored textural images of skin tissues. Since medical images havehighly heterogeneity, the development of reliable skin-cancer detection process is difficult, and a mono fractaldimension is not sufficient to classify images of this nature. A multifractal-based feature vectors are suggested hereas an alternative and more effective tool. At the same time multiple color channels are used to get more descriptivefeatures.Two multifractal based set of features are suggested here. The first set measures the local roughness property, whilethe second set measure the local contrast property.A combination of all the extracted features from the three colormodels gives a highest classification accuracy with 99.4
... Show MorePredicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes be
... Show MoreTelevision white spaces (TVWSs) refer to the unused part of the spectrum under the very high frequency (VHF) and ultra-high frequency (UHF) bands. TVWS are frequencies under licenced primary users (PUs) that are not being used and are available for secondary users (SUs). There are several ways of implementing TVWS in communications, one of which is the use of TVWS database (TVWSDB). The primary purpose of TVWSDB is to protect PUs from interference with SUs. There are several geolocation databases available for this purpose. However, it is unclear if those databases have the prediction feature that gives TVWSDB the capability of decreasing the number of inquiries from SUs. With this in mind, the authors present a reinforcement learning-ba
... Show More