This work aims to optimize surface roughness, wall angle deviation, and average wall thickness as output responses of ALuminium-1050 alloy cone formed by the single point incremental sheet metal forming process. The experiments are accomplished based on the use of a mixed level Taguchi experimental design with an L18 orthogonal array. Six levels of step depth, three levels of tool diameter, feed rate, and tool rotational speed have been considered as input process parameters. The analyses of variance (ANOVA) have been used to investigate the significance of parameters and the effect of their levels for minimum surface roughness, minimum wall angle deviation, and maximum average wall thickness. The results indicate that step depth and tool r
... Show MoreThis research presents a comparison of performance between recycled single stage and double stage hydrocyclones in separating water from water/kerosene emulsion. The comparison included several factors such as: inlet flow rate (3,5,7,9, and 11 L/min), water feed concentration (5% and 15% by volume), and split ratio (0.1 and 0.9). The comparison extended to include the recycle operation; once and twice recycles. The results showed that increasing flow rate as well as the split ratio enhancing the separation efficiency for the two modes of operation. On the contrary, reducing the feed concentration gave high efficiencies for the modes. The operation with two cycles was more efficient than one cycle. The maximum obtained effici
... Show MoreThe present research focuses on the study of the effect of mass transfer resistance on the rate of heat transfer in pool boiling. The nucleate pool boiling heat transfer coefficients for binary mixtures (ethanol-n-butanol, acetone-n-butanol, acetone-ethanol, hexane-benzene, hexane-heptane, and methanol-water) were measured at different concentrations of the more volatile components. The systems chosen covered a wide range of mixture behaviors.
The experimental set up for the present investigation includes electric heating element submerged in the test liquid mounted vertically. Thermocouple and a digital indictor measured the temperature of the heater surface. The actual heat transfer rate being obtained by multiplying the voltme
... Show MoreThis research studyies wear rate of composite materials by using Epoxy Resin and Polyurethane Rubber as a matrix of weigt percentage (90:10) (Ep/Pu) and reinforced by PVC fibers and Aluminum fibers two dimension knitted mat with fractional volume(15 %), in different conditions like: lab conditions and after submerge the samples in water for different periods of time. . four kinds of materials were prepared: (Ep+pu), (Ep+Pu+PVC), (Ep+Pu+Al.F), (Ep+Pu+PVC+Al. F) .And the results have shown that the best wear resistance are for the hybrid composite material (Ep + Pu+ PVC + Al. F) and wear rate of all samples increased when it was submerged in water
Low-pressure capacitively coupled RF discharge Ar plasma has been studied using Langmuir probe. The electron temperature, electron density and Debay length were calculated under different pressures and electrode gap. In this work the RF Langmuir probe is designed using 4MHz filter as compensation circuit and I-V probe characteristic have been investigated. The pressure varied from 0.07 mbar to 0.1 mbar while electrode gap varied from 2-5 cm. The plasma was generated using power supply at 4MHz frequency with power 300 W. The flowmeter is used to control Argon gas flow in the range of 600 standard cubic centimeters per minute (sccm). The electron temperature drops slowly with pressure and it's gradually decreased when expanding the electro
... Show MoreIn this paper, the time-history responses of a square plan two-story reinforced concrete prototype building, considering the elastic and inelastic behavior of the materials, were studied numerically. ABAQUS software was used in three-dimensional (3D) nonlinear dynamic analysis to predict the inelastic response of the buildings. Concrete Damage Plasticity Model (CDPM) has been used to model the inelastic behavior of the reinforced concrete building under seismic excitation. The input data included geometric information, material properties, and the ground motion. The building structure was designed only for gravity load according to ACI 318 with
... Show MoreA low-cost, RGB LED-based visible-light spectrophotometer was designed to measure dyes concentration. Dyes are widely used as indicators or coloring agents in different applications and knowing their concentration is an essential part for many studies. The proposed spectrophotometer provides many functionalities that clones the traditional expensive spectrophotometers for a budged price under $50. It was aimed to provide a versatile tool for instructors and educators to teach their students the fundamental concepts behind spectrophotometry. Malachite green, methyl red, and methyl orange dyes were chosen to be good samples to show the integrity of the proposed spectrophotometer in terms of accuracy, repeatability, and sensitivity as
... Show More