Software-defined networking (SDN) presents novel security and privacy risks, including distributed denial-of-service (DDoS) attacks. In response to these threats, machine learning (ML) and deep learning (DL) have emerged as effective approaches for quickly identifying and mitigating anomalies. To this end, this research employs various classification methods, including support vector machines (SVMs), K-nearest neighbors (KNNs), decision trees (DTs), multiple layer perceptron (MLP), and convolutional neural networks (CNNs), and compares their performance. CNN exhibits the highest train accuracy at 97.808%, yet the lowest prediction accuracy at 90.08%. In contrast, SVM demonstrates the highest prediction accuracy of 95.5%. As such, an SVM-based DDoS detection model shows superior performance. This comparative analysis offers a valuable insight into the development of efficient and accurate techniques for detecting DDoS attacks in SDN environments with less complexity and time.
The transfer function model the basic concepts in the time series. This model is used in the case of multivariate time series. As for the design of this model, it depends on the available data in the time series and other information in the series so when the representation of the transfer function model depends on the representation of the data In this research, the transfer function has been estimated using the style nonparametric represented in two method local linear regression and cubic smoothing spline method The method of semi-parametric represented use semiparametric single index model, With four proposals, , That the goal of this research is comparing the capabilities of the above mentioned m
... Show MoreNebivolol (NBH) is a third-generation B1-blocker with high selectivity and vasodilation activity. Nevertheless, nebivolol exhibits low oral bioavailability, which may adversely affect its efficacy. Recently, supersaturable self-nanoemulsion (Su-SNE) is an advanced SNE approach that can address low bioavailability The study aims to prepare nebivolol-loaded Su-SNE by reduction the amount of the prepared conventional SNE to half. Besides, an appropriate polymer type and concentration to prevent NBH precipitation upon oral administration have investigated.. A conventional self-nanoemulsion (formula A) was prepared by dissolving NBH in 500 mg vehicle mixture of imwitor®988: cremophor-EL: propylene glycol. Then, eight Su-SNE formulas wit
... Show MoreNebivolol (NBH) is a third-generation B1-blocker with high selectivity and vasodilation activity. Nevertheless, nebivolol exhibits low oral bioavailability, which may adversely affect its efficacy. Recently, supersaturable self-nanoemulsion (Su-SNE) is an advanced SNE approach that can address low bioavailability The study aims to prepare nebivolol-loaded Su-SNE by reduction the amount of the prepared conventional SNE to half. Besides, an appropriate polymer type and concentration to prevent NBH precipitation upon oral administration have investigated.. A conventional self-nanoemulsion (formula A) was prepared by dissolving NBH in 500 mg vehicle mixture of imwitor®988: cremophor-EL: propylene glycol. Then, eight Su-SNE formul
... Show MoreAbstract
The research aimed to test the relationship between the size of investment allocations in the agricultural sector in Iraq and their determinants using the Ordinary Least Squares (OLS) method compared to the Error Correction Model (ECM) approach. The time series data for the period from 1990 to 2021 was utilized. The analysis showed that the estimates obtained using the ECM were more accurate and significant than those obtained using the OLS method. Johansen's test indicated the presence of a long-term equilibrium relationship between the size of investment allocations and their determinants. The results of th
... Show MoreIn recent decades, drug modification is no longer unusual in the pharmaceutical world as living things are evolving in response to environmental changes. A non-steroidal anti-inflammatory drug (NSAID) such as aspirin is a common over-the-counter drug that can be purchased without medical prescription. Aspirin can inhibit the synthesis of prostaglandin by blocking the cyclooxygenase (COX) which contributes to its properties such as anti-inflammatory, antipyretic, antiplatelet and etc. It is also being considered as a chemopreventive agent due to its antithrombotic actions through the COX’s inhibition. However, the prolonged use of aspirin can cause heartburn, ulceration, and gastro-toxicity in children and adults. This review article hi
... Show MoreToday, the science of artificial intelligence has become one of the most important sciences in creating intelligent computer programs that simulate the human mind. The goal of artificial intelligence in the medical field is to assist doctors and health care workers in diagnosing diseases and clinical treatment, reducing the rate of medical error, and saving lives of citizens. The main and widely used technologies are expert systems, machine learning and big data. In the article, a brief overview of the three mentioned techniques will be provided to make it easier for readers to understand these techniques and their importance.
In this paper, image compression technique is presented based on the Zonal transform method. The DCT, Walsh, and Hadamard transform techniques are also implements. These different transforms are applied on SAR images using Different block size. The effects of implementing these different transforms are investigated. The main shortcoming associated with this radar imagery system is the presence of the speckle noise, which affected the compression results.
Image quality plays a vital role in improving and assessing image compression performance. Image compression represents big image data to a new image with a smaller size suitable for storage and transmission. This paper aims to evaluate the implementation of the hybrid techniques-based tensor product mixed transform. Compression and quality metrics such as compression-ratio (CR), rate-distortion (RD), peak signal-to-noise ratio (PSNR), and Structural Content (SC) are utilized for evaluating the hybrid techniques. Then, a comparison between techniques is achieved according to these metrics to estimate the best technique. The main contribution is to improve the hybrid techniques. The proposed hybrid techniques are consisting of discrete wavel
... Show More