Software-defined networking (SDN) presents novel security and privacy risks, including distributed denial-of-service (DDoS) attacks. In response to these threats, machine learning (ML) and deep learning (DL) have emerged as effective approaches for quickly identifying and mitigating anomalies. To this end, this research employs various classification methods, including support vector machines (SVMs), K-nearest neighbors (KNNs), decision trees (DTs), multiple layer perceptron (MLP), and convolutional neural networks (CNNs), and compares their performance. CNN exhibits the highest train accuracy at 97.808%, yet the lowest prediction accuracy at 90.08%. In contrast, SVM demonstrates the highest prediction accuracy of 95.5%. As such, an SVM-based DDoS detection model shows superior performance. This comparative analysis offers a valuable insight into the development of efficient and accurate techniques for detecting DDoS attacks in SDN environments with less complexity and time.
Five serological methods for detection of Brucella were compaired in this study, Four of the methods are commonely used in the detections:- 1-Rose-Bengal: as primary screening test which depends on detecting antibodies in the blood serum. 2-IFAT: which detects IgG and IgM antibodies in the serum. 3-ELISA test: which detects IgG antibodies in the serum. 4-2ME test: which detects IgG antibodies The fifth methods. It was developed by a reasercher in one of the health centers in Baghdad. It was given the name of spot Immune Assay (SIA). Results declares that among (100) samples of patients blood, 76, 49, 49, 37, and 28. samples were positive to Rose Bengal, ELISA, SIA, 2ME and IFAT tests, respectively. When efficiency, sensitivity and specific
... Show MoreIn this study, NAC-capped CdTe/CdS/ZnS core/double shell QDs were synthesized in an aqueous medium to investigate their utility in distinguishing normal DNA from mutated DNA extracted from biological samples. Following the interaction between the synthesized QDs with DNA extracted from leukemia cases (represents damaged DNA) and that of healthy donors (represents undamaged DNA), differential fluorescent emission maxima and intensities were observed. It was found that damaged DNA from leukemic cells DNA-QDs conjugates at 585 nm while intact DNA (from healthy subjects) DNA–QDs conjugates at 574 nm. The obtained results from the optical analyses indicate that the prepared QDs could be utilized as probe for detecting disrupted DNA th
... Show MoreABSTRICT:
This study is concerned with the estimation of constant and time-varying parameters in non-linear ordinary differential equations, which do not have analytical solutions. The estimation is done in a multi-stage method where constant and time-varying parameters are estimated in a straight sequential way from several stages. In the first stage, the model of the differential equations is converted to a regression model that includes the state variables with their derivatives and then the estimation of the state variables and their derivatives in a penalized splines method and compensating the estimations in the regression model. In the second stage, the pseudo- least squares method was used to es
... Show MoreThis study focuses on evaluating the suitability of three interpolation methods in terms of their accuracy at climate data for some provinces of south of Iraq. Two data sets of maximum and minimum temperature in February 2008 from nine meteorological stations located in the south of Iraq using three interpolation methods. ArcGIS is used to produce the spatially distributed temperature data by using IDW, ordinary kriging, and spline. Four statistical methods are applied to analyze the results obtained from three interpolation methods. These methods are RMSE, RMSE as a percentage of the mean, Model efficiency (E) and Bias, which showed that the ordinary krigingis the best for this data from other methods by the results that have b
... Show MoreClassifying an overlapping object is one of the main challenges faced by researchers who work in object detection and recognition. Most of the available algorithms that have been developed are only able to classify or recognize objects which are either individually separated from each other or a single object in a scene(s), but not overlapping kitchen utensil objects. In this project, Faster R-CNN and YOLOv5 algorithms were proposed to detect and classify an overlapping object in a kitchen area. The YOLOv5 and Faster R-CNN were applied to overlapping objects where the filter or kernel that are expected to be able to separate the overlapping object in the dedicated layer of applying models. A kitchen utensil benchmark image database and
... Show MoreIn this paper, we derived an estimator of reliability function for Laplace distribution with two parameters using Bayes method with square error loss function, Jeffery’s formula and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived Bayesian estimator compared to the maximum likelihood of this function and moment method using simulation technique by Monte Carlo method under different Laplace distribution parameters and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator and moment estimator in all samples sizes
Background: lip lengthening procedure is one of the surgical options for the correction of gummy smile in patients with short upper lip. Methods: A comparative clinical study was conducted on 15 patients requiring lip lengthening procedure for the esthetic correction of excessive gingival exposure with gummy smile. Scalpel was used in seven patients and diode laser in the remaining eight patients. Under infiltration anesthesia, about one cm strip of mucosa was excised at the vestibular depth and the mucosa of the lip was sutured to the alveolar mucosa. Results: The diode laser group demonstrated less postoperative pain and swelling. Regarding postoperative ecchymosis, three patients in the scalpel group developed ecchymosis and no cases
... Show MoreLand Use / Land Cover (LULC) classification is considered one of the basic tasks that decision makers and map makers rely on to evaluate the infrastructure, using different types of satellite data, despite the large spectral difference or overlap in the spectra in the same land cover in addition to the problem of aberration and the degree of inclination of the images that may be negatively affect rating performance. The main objective of this study is to develop a working method for classifying the land cover using high-resolution satellite images using object based method. Maximum likelihood pixel based supervised as well as object approaches were examined on QuickBird satellite image in Karbala, Iraq. This study illustrated that
... Show More