Software-defined networking (SDN) presents novel security and privacy risks, including distributed denial-of-service (DDoS) attacks. In response to these threats, machine learning (ML) and deep learning (DL) have emerged as effective approaches for quickly identifying and mitigating anomalies. To this end, this research employs various classification methods, including support vector machines (SVMs), K-nearest neighbors (KNNs), decision trees (DTs), multiple layer perceptron (MLP), and convolutional neural networks (CNNs), and compares their performance. CNN exhibits the highest train accuracy at 97.808%, yet the lowest prediction accuracy at 90.08%. In contrast, SVM demonstrates the highest prediction accuracy of 95.5%. As such, an SVM-based DDoS detection model shows superior performance. This comparative analysis offers a valuable insight into the development of efficient and accurate techniques for detecting DDoS attacks in SDN environments with less complexity and time.
The value of time out as a time not count of official time form the game like four periods and extra time also it considered a great interest if used well thru the game , the importance of this problem is not using well the time out and when the coach ask for time out and how to invest this time legally to make good results also there is no observing system as the researcher see gives the reality image that the coach is successful lead the game when he takes time out . The goals of research that knowing on numbers of time out for excellent teams in Iraq (first &second) stages and putting special inventory reverse reality of asking time out (positive &negative) on playing basketball , the hypothesis of research that tell the time out effect
... Show MoreThis research consists of two parts, the first part concern with analyzing the collected data of BOD and COD values in discharge waste water from Al-Dora refinery during 2010 to find the relationship between these two variables The results indicates that there
is a high correlation between BOD and COD when using a natural logarithm model (0.86 ln(COD)) with correlation coefficient of 0.98. This relationship is useful in predicting the BOD value using the COD value. The second part includes analyzing collected data from the same site in order to find a relationsip between BOD and other parameters COD, Phenol(phe), Temperature(T), Oil, Sulphat(SO4),pH and Total dissolved solids( TDS) discharged from the refinery. The results indicated
The research included anatomical study of nine wild species of the genus
Athionema R.BR. from BrassicaceA family in Iraq, and these species are:
A.arabicum (L.), A.carneum (Banks et sol.),A. cordifolium (DC.), A.fimbriatum
(Boiss.),A. froedinii (Rech. F.), A. speciosum (Boiss. et Huet), A. syriacum
(Boiss.),A. grandiflorum (Boiss. et Hoh.) , A.trinervium (D.C.).The research
covered the anatomical characteristic of the leaf Epidermis as well as leaves
venation, also transvers sections for leaves were studied ,and revealed that some
anatomical characteristics have taxonomic importance in distinguishing the species.
This research also showed the presence of important variations in internal charecters
for leaves an
Burdock ( Arctium lappa), is among the most popular plants in traditional medicine and it is associated with several biological effects. Literature survey revealed the presence of phenylpropanoid compounds .The most widespread are hydroxycinnamic acids ( mainly caffeic acid and chlorogenic acid) and lignans (mainly arctiin and arctigenin). This work will confirm the presence of these compounds in Arctium lappa, cultivated in Iraq, in both root and leaf samples. The dried plant samples were extracted by soxhlet with 80% methanol then separated the main constituents by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Identification of the isolated compounds wa
... Show MoreRemote sensing provide the best means to monitoring change in vegetation over a wide range of temporal scales over large areas. In this study, the vegetation index which has been applied known as the Stress Related Vegetation Index (STVI) on in the area around the Euphrates River and part of Al-Habbaniyah lake which located at western side of the river in Ramadi city, Al-Anbar province at Iraq to study the vegetation cover changes and detect the areas of changes, using two satellite sensors multispectral images such as TM and ALI, after geometric correction procedure to rectifying these images. The STVI-4 index result was the best than other vegetation indices (STVI-1 and STVI-3) to discriminate the vegetable cover distribution. The diff
... Show MoreThe study aims to indicate the role of the agricultural initiative in building agricultural development, mediated by activation of the role of internal and external audit on agricultural initiative projects, for the purpose of meeting the challenges of abuses on agricultural land and lack of water used in agriculture and proportions of high poverty, which led to the rural people of the migration to the city and leave agriculture and livestock, and that of the main conclusions reached by the researcher. When comparing the work of the external auditing agencies (the Federal Office of Financial Supervision) on the initiative of agricultural projects with internal audit services in the Directorate of Agriculture and branches of the Agricultu
... Show MoreAbiotic stress-induced genes may lead to understand the response of plants and adaptability to salinity and drought stresses. Differential display reverse transcriptase – polymerase chain reaction (DDRT-PCR) was used to investigate the differences in gene expression between drought- and salinity-stressed plantlets of Ruta graveolens. Direct and stepwise exposures to drought- or salt-responsive genes were screened in R. graveolens plantlets using the DDRT technique. Gene expression was investigated both in the control and in the salt or drought-stressed plantlets and differential banding patterns with different molecular sizes were observed using the primers OPA-01 (646,770 and 983 pb), OPA-08 (593 and 988 pb), OPA-11 (674 and 831 pb
... Show More