Preferred Language
Articles
/
TBepwpIBVTCNdQwCrL81
The impact of strategic leadership on the building of intelligent organizations: A field study of a group of economic institutions in Algeria
...Show More Authors

This study aims to highlight the role of strategic leadership in adopting the intelligent organization model. The study was conducted on 7 economic organizations in Algeria. The study population consisted of 354 leaders, of whom a random sample of 176 leaders (managers, department heads, division heads, engineers) was selected. The researcher used a questionnaire as the main tool of the study. Statistical analysis and hypothesis testing were conducted using SEM (Structural Equation Modeling) with the aid of SPSS.v26 and AMOS.v24 software. The study concluded with a set of results, most notably: there is a statistically significant direct positive effect between strategic leadership and building intelligent organizations at a significance level of 0.05.

Publication Date
Wed Feb 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
العلاقة السببية بين منهج التخطيط والتنمية – بحث تحليلي للتجربة الماليزية –
...Show More Authors

 ٳن العلاقة بين التخطيط والتنمية، تكتسب᾽ شكلها وطبيعتها من خلال دور التخطيط في ٳخضاع عملية التغيير والتحوّل للأوضاع الاقتصادية من وضع الى وضع آخر أكثر تقدما̋ عن طريق ٳعتماد منهج التخطيط لتحديد معالم خطوط السير المجدول زمنيا̋ لعملية التغيير والتحوّل وفقا̋ لرؤية الحكومة وفلسفتها باتجاه الانتقال من وضع ٳقتصادي وٳجتماعي متخلف الى وضع ٳقتصادي وٳجتماعي آخر يسمح بجعل عملية النمو مستمرة، ويمكن تبيّن تلك

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Nov 29 2023
Journal Name
International Journal Of Advances In Scientific Research And Engineering (ijasre), Issn:2454-8006, Doi: 10.31695/ijasre
Yolo Versions Architecture: Review
...Show More Authors

Deep learning techniques are applied in many different industries for a variety of purposes. Deep learning-based item detection from aerial or terrestrial photographs has become a significant research area in recent years. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed.  A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles and classification probabilities for an image. In layman's terms, it is a technique for instantly identifying and recognizing

... Show More
View Publication
Publication Date
Sat Apr 15 2023
Journal Name
Iraqi Journal Of Science
Best Way to Detect Breast Cancer by UsingMachine Learning Algorithms
...Show More Authors

Breast cancer is the second deadliest disease infected women worldwide. For this
reason the early detection is one of the most essential stop to overcomeit dependingon
automatic devices like artificial intelligent. Medical applications of machine learning
algorithmsare mostly based on their ability to handle classification problems,
including classifications of illnesses or to estimate prognosis. Before machine
learningis applied for diagnosis, it must be trained first. The research methodology
which isdetermines differentofmachine learning algorithms,such as Random tree,
ID3, CART, SMO, C4.5 and Naive Bayesto finds the best training algorithm result.
The contribution of this research is test the data set with mis

... Show More
View Publication Preview PDF
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Science
Sequential feature selection for heart disease detection using random forest
...Show More Authors

Heart disease identification is one of the most challenging task that requires highly experienced cardiologists. However, in developing nations such as Ethiopia, there are a few cardiologists and heart disease detection is more challenging. As an alternative solution to cardiologist, this study proposed a more effective model for heart disease detection by employing random forest and sequential feature selection (SFS). SFS is an effective approach to improve the performance of random forest model on heart disease detection. SFS removes unrelated features in heart disease dataset that tends to mislead random forest model on heart disease detection. Thus, removing inappropriate and duplicate features from the training set with sequential f

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (2)
Scopus Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Nasaq Journal
Iraqi EFL Students’ Attitudes towards Online Learning
...Show More Authors

Online learning is not a new concept in education, but it has been used extensively since the Covid-19 pandemic and is still in use now. Every student in the world has gone through this learning process from the primary to the college levels, with both teachers and students conducting instruction online (at home). The goal of the current study is to investigate college students’ attitudes towards online learning. To accomplish the goal of the current study, a questionnaire is developed and adjusted before being administered to a sample of 155 students. Additionally, validity and reliability are attained. Some conclusions, recommendations, and suggestions are offered in the end.

Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
COVID-19 Diagnosis System using SimpNet Deep Model
...Show More Authors

After the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Baghdad Science Journal
Diagnosing Pilgrimage Common Diseases by Interactive Multimedia Courseware
...Show More Authors

In this study, we attempt to provide healthcare service to the pilgrims. This study describes how a multimedia courseware can be used in making the pilgrims aware of the common diseases that are present in Saudi Arabia during the pilgrimage. The multimedia courseware will also be used in providing some information about the symptoms of these diseases, and how each of them can be treated. The multimedia courseware contains a virtual representation of a hospital, some videos of actual cases of patients, and authentic learning activities intended to enhance health competencies during the pilgrimage. An examination of the courseware was conducted so as to study the manner in which the elements of the courseware are applied in real-time learn

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
SMS Spam Detection Using Multiple Linear Regression and Extreme Learning Machines
...Show More Authors

     With the growth of the use mobile phones, people have become increasingly interested in using Short Message Services (SMS) as the most suitable communications service. The popularity of SMS has also given rise to SMS spam, which refers to any unwanted message sent to a mobile phone as a text. Spam may cause many problems, such as traffic bottlenecks or stealing important users' information. This paper,  presents a new model that extracts seven features from each message before applying a Multiple Linear Regression (MLR) to assign a weight to each of the extracted features. The message features are fed into the Extreme Learning Machine (ELM) to determine whether they are spam or ham. To evaluate the proposed model, the UCI bench

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Hybrid CNN-based Recommendation System
...Show More Authors

Recommendation systems are now being used to address the problem of excess information in several sectors such as entertainment, social networking, and e-commerce. Although conventional methods to recommendation systems have achieved significant success in providing item suggestions, they still face many challenges, including the cold start problem and data sparsity. Numerous recommendation models have been created in order to address these difficulties. Nevertheless, including user or item-specific information has the potential to enhance the performance of recommendations. The ConvFM model is a novel convolutional neural network architecture that combines the capabilities of deep learning for feature extraction with the effectiveness o

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
Hybrid CNN-SMOTE-BGMM Deep Learning Framework for Network Intrusion Detection using Unbalanced Dataset
...Show More Authors

This paper proposes a new methodology for improving network security by introducing an optimised hybrid intrusion detection system (IDS) framework solution as a middle layer between the end devices. It considers the difficulty of updating databases to uncover new threats that plague firewalls and detection systems, in addition to big data challenges. The proposed framework introduces a supervised network IDS based on a deep learning technique of convolutional neural networks (CNN) using the UNSW-NB15 dataset. It implements recursive feature elimination (RFE) with extreme gradient boosting (XGB) to reduce resource and time consumption. Additionally, it reduces bias toward

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Crossref