Construction of artificial higher order protein complexes allows sampling of structural architectures and functional features not accessible by classical monomeric proteins. Here, we combine in silico modelling with expanded genetic code facilitated strain promoted azide-alkyne cycloaddition to construct artificial complexes that are structurally integrated protein dimers and demonstrate functional synergy. Using fluorescent proteins sfGFP and Venus as models, homodimers and heterodimers are constructed that switched ON once assembled and display enhanced spectral properties. Symmetrical crosslinks are found to be important for functional enhancement. The determined molecular structure of one artificial dimer shows that a new long-range polar network comprised mostly of organised water molecules links the two chromophores leading to activation and functional enhancement. Single molecule analysis reveals the dimer is more resistant to photobleaching spending longer times in the ON state. Thus, genetically encoded bioorthogonal chemistry can be used to generate truly integrated artificial protein complexes that enhance function.
The purpose of this study is to investigate the research on artificial intelligence algorithms in football, specifically in relation to player performance prediction and injury prevention. To accomplish this goal, scholarly resources including Google Scholar, ResearchGate, Springer, and Scopus were used to provide a systematic examination of research done during the last ten years (2015–2025). Through a systematic procedure that included data collection, study selection based on predetermined criteria, categorisation based on AI applications in football, and assessment of major research problems, trends, and prospects, almost fifty papers were found and analysed. Summarising AI applications in football for performance and injury p
... Show MoreAccording to the importance of the conveyor systems in various industrial and service lines, it is very desirable to make these systems as efficient as possible in their work. In this paper, the speed of a conveyor belt (which is in our study a part of an integrated training robotic system) is controlled using one of the artificial intelligence methods, which is the Artificial Neural Network (ANN). A visions sensor will be responsible for gathering information about the status of the conveyor belt and parts over it, where, according to this information, an intelligent decision about the belt speed will be taken by the ANN controller. ANN will control the alteration in speed in a way that gives the optimized energy efficiency through
... Show MoreBackground:The demand for esthetic orthodontic appliances is increasing so that the esthetic orthodontic archwires were introduced. This in vitro study was designed to evaluate the surface roughness offiber-reinforced polymer composite (FRPC) archwires compared to coated nickel-titanium (NiTi) archwires immersed in artificial saliva. Materials and Methods:Three types of esthetic orthodontic archwires were used: FRPC (Dentaurum), Teflon coated NiTi (Dentaurum) and epoxy coated NiTi (Orthotechnology). They were round (0.018 inch) in cross section and cut into pieces of 15 mm in length.Forty pieces from each type were divided into four groups; one group was left at a dry condition and the other three groups were immersed in artificial saliva (
... Show MoreThe increase globally fossil fuel consumption as it represents the main source of energy around the world, and the sources of heavy oil more than light, different techniques were used to reduce the viscosity and increase mobility of heavy crude oil. this study focusing on the experimental tests and modeling with Back Feed Forward Artificial Neural Network (BFF-ANN) of the dilution technique to reduce a heavy oil viscosity that was collected from the south- Iraq oil fields using organic solvents, organic diluents with different weight percentage (5, 10 and 20 wt.% ) of (n-heptane, toluene, and a mixture of different ratio
... Show MoreThe drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the
Currently and under the COVID-19 which is considered as a kind of disaster or even any other natural or manmade disasters, this study was confirmed to be important especially when the society is proceeding to recover and reduce the risks of as possible as injuries. These disasters are leading somehow to paralyze the activities of society as what happened in the period of COVID-19, therefore, more efforts were to be focused for the management of disasters in different ways to reduce their risks such as working from distance or planning solutions digitally and send them to the source of control and hence how most countries overcame this stage of disaster (COVID-19) and collapse. Artificial intelligence should be used when there is no practica
... Show MoreObjective(s): The study aims to evaluating the quality of nursing care provided to children under five years to compare between quality related to type of health sectors; to determine the quality of nursing care and to compare between such care in Baquba Health Care Sector I and II.
Methodology: A descriptive study is carried out for the period from December 15th 2019 to May 1st 2020. A purposive "non- probability" sample, of (60) staff nurse and (60) children is selected. An adopted questionnaire has been selected for the study which consists of three parts. The first part is nurses’ socio-demographic characteristic; the second part is ch
... Show MoreThe activation and reaction energies of the C-C and C-H bonds cleavage in pyrene molecule are calculated applying the Density Functional Theory and 6-311G Gaussian basis. Different values for the energies result for the different bonds, depending on the location of the bond and the structure of the corresponding transition states. The C-C bond cleavage reactions include H atom migration, in many cases, leading to the formation of CH2 groups and H-C≡C- acetylenic fragments. The activation energy values of the C-C reactions are greater than 190.00 kcal/mol for all bonds, those for the C-H bonds are greater than 160.00 kcal/mol. The reaction energy values for the C-C bonds range between 56.497 to 191.503 kcal/mol. As for the C-H cleavage rea
... Show More