A retrospective study is conducted to identify factors that improve prospective animal studies; contribute to the optimization of animal protection from all unnecessary and preventable damage. Preclinical oral histology research from 2010-2020 is evaluated and 64 studies were reviewed relating to two interventions: bone trauma and surgical incision. The harm-benefit analysis is featured in this study through the application of the recent form of Bateson's Cube. Depending on its three axes, we can assess animal suffering, the likelihood of benefit, and the importance of research. The total number of animals used in the research is 2685. Rats, 51.6%, and rabbits, 48.4%, are the most commonly used animals. Research related to bone healing accounts for about 65.6%, while research related to wound healing 34.4%. The expert panel's estimate of animal suffering revealed that 57.8% had moderate animal suffering; 39.1% had mild suffering, and only 3.1% had severe suffering. Results revealed that hard tissue studies get more citations, 77.88% more than soft tissue-related research. However, the soft tissue studies show more concordance between preclinical and clinical studies. Continual efforts should be made to assure that when animals are involved in research, each study is well-designed, well-analyzed, and clearly published.
Ultra-High Temperature Materials (UHTMs) are at the base of entire aerospace industry; these high stable materials at temperatures exceeding 1600 °C are used to manage the heat shielding to protect vehicles and probes during the hypersonic flight through reentry trajectory against aerodynamic heating and reducing plasma surface interaction. Those materials are also recognized as Thermal Protection System Materials (TPSMs). The structural materials used during the high-temperature oxidizing environment are mainly limited to SiC, oxide ceramics, and composites. In addition to that, silicon-based ceramic has a maximum-use at 1700 °C approximately; as it is an active oxidation process o
Porous materials play an important role in creating a sustainable environment by improving wastewater treatment's efficacy. Porous materials, including adsorbents or ion exchangers, catalysts, metal–organic frameworks, composites, carbon materials, and membranes, have widespread applications in treating wastewater and air pollution. This review examines recent developments in porous materials, focusing on their effectiveness for different wastewater pollutants. Specifically, they can treat a wide range of water contaminants, and many remove over 95% of targeted contaminants. Recent advancements include a wider range of adsorption options, heterogeneous catalysis, a new UV/H2O
Background: Saliva is a specific bio-fluid with important biomarkers. Analyzing any alternation in these markers could give valuable information, in relation to oral health status parameters. The aim of this study was to investigate the level of α -amylase in unstimulated whole saliva of healthy, primary school children in relation to some oral health parameters. Materials and Methods: A questionnaires consisted of demography and medical histories of participants were filled by children families. Saliva samples were collected for 5- minutes between 9:00 -11:00 AM from 114 healthy students aged 6-13 years, divided into four age groups. Flow- rate, Plaque and Gingival Index were assessed and dentition status was investigated by DMFT/dmft
... Show MoreThe main idea of this research is that the researcher believes that media research remains useless unless its goals and results are achieved by using the correct scientific tools. The researcher chooses 100 research papers of about 35% of the published ones, 10 of them are excluded because they are outside media. We use a simple and randomized sample including the three departments of media: journalism, television and radio journalism and public relations. The researcher adopts statistical methods such as Fay coefficient, correlation coefficient, Pearson correlation coefficient and straight line equation.
The researcher uses an analytical form followed by analysis of content, them the scale. The results are found in 58 researches, w
Historically, medicinal herbs have been utilized as an important origin of chemicals with particular therapeutic potentials, and they continue to be a great place to find new medication candidates. Parthenocissus quinquefolia L. is a member of the grape-growing family Vitaceae. It is indigenous to Central and North America. It is widely dispersed in Iraqi gardens and plant houses from north to south. Traditionally, it has many uses, like relieving constipation, treating jaundice, expectorant, emetic, and others. At the same time, its proven activities include antioxidant activity, antimicrobial, anti-diabetic, thrombin inhibitor effect, and medicine for treating eyelid eczema. Parthenocissus quinquefolia contains valuable phytochemicals lik
... Show MoreABSTRACT: Oxadiazole ring is a heterocyclic molecule with an oxygen and two nitrogen atoms spread throughout its five-membered structure. There are four different isomers that have been discovered, Because of their wide applications in a range of sectors, including medications . Some of these biological activity are; anticonvulsant capacity, anticancer as well, antibacterial, antiviral, antifungal, antimalarial, antitubercular, anti-asthmatic, antidepressant, antidiabetic, antioxidant, antiparkinsonian, analgesic and anti-inflammatory, are just some of the therapeutic uses that have drawn attention to drug candidates containing an oxadiazole moiety. This review, we will examine the various methods of oxadiazole synthesis. The mo
... Show More