The ring modulator described in part I of this paper is designed here for two operating wavelengths 1550nm and 1310nm. For each wavelength, three structures are designed corresponding to three values of polymer slot widths (40, 50 and 60nm). The performance of these modulators are simulated using COMSOL software (version 4.3b) and the results are discussed and compared with theoretical predictions. The performance of intensity modulation/direct detection short range and long rang optical communication systems incorporating the designed modulators is simulated for 40 and 100Gb/s data rates using Optisystem software (version 12). The results reveal that an average energy per bit as low as 0.05fJ can be obtained when the 1550nm modulator is designed with a phase shifter length equals twice the coupling length.
In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction acc
... Show MoreThis study is planned with the aim of constructing models that can be used to forecast trip production in the Al-Karada region in Baghdad city incorporating the socioeconomic features, through the use of various statistical approaches to the modeling of trip generation, such as artificial neural network (ANN) and multiple linear regression (MLR). The research region was split into 11 zones to accomplish the study aim. Forms were issued based on the needed sample size of 1,170. Only 1,050 forms with responses were received, giving a response rate of 89.74% for the research region. The collected data were processed using the ANN technique in MATLAB v20. The same database was utilized to
An abstract is a brief summary of a research article, thesis, Schiff base ligand (L) was prepared by the reaction of 4-aminantipyrine with o-phenylenediamine, the prepared ligand characterized by Micro elemental Analysis, FT. IR, UV-Vis, and 1H,13C-NMR spectroscopy.complexes of Mn(II), Co(II), Ni(II), Cu(II) and Hg(II) with Schiff base and 1,10-phenanthroline (Phen) have been investigated in aqueous ethanol with (1:1:1) (M:L:Phen). The prepared complexes were characterized using flame atomic absorption, (C. H. N) Analysis, FT. IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. From the obtained data the octahedral structure was suggested for all complexes. The biological screening effects o
... Show MoreMixed ligand complexes of bivalent metal ions, viz; Co(II), Ni(II), Cu(II) and Zn(II) of the composition [M(A)2((PBu3)2]in(1:2:2)(M:A:(PBu3). molar ratio, (where A- Anthranilate ion ,(PBu3)= tributylphosphine. M= Co(II),Ni(II),Cu(II) and Zn(II). The prepared complexes were characterized using flame atomic absorption, by FT-IR, UV/visible spectra methods as well as magnetic susceptibility and conductivity measurements. The metal complexes were tested in vitro against three types of pathogenic bacteria microorganisms: (Staphylococcus, Klebsiella SPP .and Bacillas)to assess their antimicrobial properties. Results. The study shows that all complexes have octahedral geometry; in addition, it has high activity against tested bacteria. Based on th
... Show MoreComplexes of Co(II),Ni(II),Cu(II)and Zn(II) with mixed ligand of 4- aminoantipyrine (4-AAP) and tributylphosphine (PBu3) were prepared in aqueous ethanol with (1:2:2) (M:L:PBu3). The prepared complexes were characterized using flame atomic absorption, FT.IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. In addition biological activity of the two ligands and their complexes against three selected type of bacteria were also examined. The general compositions of the complexes are found to be [M(4-AAP)2(PBu3)2] Cl2 . Where M= Co(II),Ni(II),Cu(II)and Zn(II). Some of the complexes exhibit good bacterial activities. From the obtained data the octahedral structures have suggested for all prepare
... Show MoreMixed ligand complexes of bivalent metal ions, viz; Co(II), Ni(II), Cu(II) and Zn(II) of the composition [M(A)2((PBu3)2]in(1:2:2)(M:A:(PBu3). molar ratio, (where A- Anthranilate ion ,(PBu3)= tributylphosphine. M= Co(II),Ni(II),Cu(II) and Zn(II). The prepared complexes were characterized using flame atomic absorption, by FT-IR, UV/visible spectra methods as well as magnetic susceptibility and conductivity measurements. The metal complexes were tested in vitro against three types of pathogenic bacteria microorganisms: (Staphylococcus, Klebsiella SPP .and Bacillas)to assess their antimicrobial properties. Results. The study shows that all complexes have octahedral geometry; in addition, it has high activity against tested bacteria. Based on th
... Show MoreThe M(II) complexes [M2 (phen)2 (L)(H2O)2Cl2 ] in (2:1:2 (M:L:phen) molar ratio, (where M(II) =Mn(II), Co(II), Cu(II), Ni(II) and Hg(II), phen = 1,10-phenanthroline; L = 2,2'-(1Z,1'Z)-(biphenyl-4,4'-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1- ylidene)diphenol] were synthesized. The mixed complexes have been prepared and characterized using 1H and13C NMR, UV/Visible, FTIR spectra methods and elemental microanalysis, as well as magnetic susceptibility and conductivity measurements. The metal complexes were tested in vitro against three types of pathogenic bacteria microorganisms: Staphylococcus aurous, Escherichia coli, Bacillussubtilis and Pseudomonasaeroginosa to assess their antimicrobial properties. From this study shows that all the
... Show MoreRKASFH Ghanim, Ibn Al -Haitham Journal for pure and applied science, 2017