This paper presents the synthesis and study of some new mixed-ligand complexes containing nicotinamide(C6H7N2O) symbolized (NA) and phenylalanine (C9H11NO2)symbolized (pheH)] with some metal ions. The resulting products were found to be solid crystalline complexes which have been characterized by :Melting points, Solubility, Molar conductivity. determination the percentage of the metal in the complexes by flame(AAS), magnetic susceptipibility, Spectroscopic Method [FT-IR and UV-Vis]. The proposed structure of the complexes using program , chem office 3D(2006) . The general formula have been given for the prepared complexes : [M(NA)2(phe)]cl M(II): Mn(II) ,Co(II) , Ni(II) , Cu(II) , Zn(II) , Cd(II) & Hg(II)). NA = Nicotinamide= C6H7N2O Phe - = phenylalanine ion = C9H10NO2 – The results showed that the deprotonated ligand (phenylalanine acid) to (phenylalanilate ion (Phe - ) by using (NaOH) coordinated to metal ions as bidentate ligand through the oxygen atom of the carboxylate group (COO) , and the nitrogen atom of the amine group (NH2). The nicotinamide coordinated as a monodendate through the nitrogen of the pyridine group .
Laser cleaning of materials’ surfaces implies the removal of deposited pollutants without affecting the material. Nanosecond Nd:YAG pulsed laser, operating at 1064 nm and 532nm, was utilized. Different laser intensities and number of pulses were used on metallic and non-metallic surfaces under O2 and Ar environments to remove metal oxide and crust. Cleaning efficiency was studied by optical microscope. The results indicated the superiority of 1064 nm over the 532 nm wavelength without any detectable damage to materials’ surfaces. Marble cleaned in Oxygen gas environment was better than in Ar gas.
Hazardous materials, heavy metals, and organic toxins released into the environment have caused considerable harm to microbes, plants, animals, and humans. Wastewater is one of the most contaminated ecosystems due to heavy metals emitted mostly by human activity. Bioremediation of wastewater is an ecologically acceptable and cost-effective method of removing heavy metals from sewage; the general purpose of this study is to analyse the dependability of anaerobic sludge biomass in removing sulfur compounds and heavy metals from waste water. The anaerobic sludge biomass evaluated in this work was taken from a wastewater treatment plant (WWTP) in Al-Rustumiya, Baghdad, and grown in the mineral medium for anaerobic growth. In serum bottl
... Show MoreThe present study envisaged utilizing 4-aminoantipyrine as key intermediate for the synthesis of some new derivatives bearing anti-bacterial and anti-cancer activities moieties viz., antipyrine diazenyl benzaldehydes 2(ad) which were obtained by coupling of diazotized 4-aminoantipyrine (1) with substituted benzaldehydes at 0◦C (iced) temperature. The other antipyrine derivatives where containing bis heterocycles like bis thiazolidinone-antipyrine (4), bis imidazolidinone -antipyrine (5) and bis azetidinone -antipyrine (6).These compounds were prepared through the reaction between 4- aminoantipyrine and terephthaldicarboxaldehyde to get (3) which were reacted with mercaptoacetic acid , glycine or chloroacetyl chloride separately to get com
... Show MoreA New ligand, N-(2-oxo-1,2- Dihydropyrimidin-4- ylcarbamothioyl) Acetamide (DPA) was prepared by reaction of iso thiosyanate derivative with Cytosine. The ligand has been characterized through elemental analysis, H1 NMR, C13NMR, FT-IR, and UV Visible spectra, such ligand’s transition metal complexes have been characterized through conductivity measurement, FT-IR, UV Visible spectra and magnetic susceptibility, all the complexes of this ligand are solid crystal and molar ratio (2:1) (ligand: metal). The form of molecular for these complexes octa hedral. The general formula [M(DPA)2Cl2], where M+2 = (Mn, Co, Ni, Cu, Zn, Cd, Hg).
ABSTRACT : This research involves the synthesis of five to seven heterocyclic compounds starting with Schiff’s bases which derived from oxime as a starting material. 1.3-oxazepine derivatives were prepared from adding different anhydrides to the Schiff bases, tetrazole and thiazolidinone derivatives synthesized from add sodium azide and thioglycolic acid to the same Schiff’s bases as a five members ring. Pyrimidine derivatives were prepared after the reaction of the azomethine group with acetyl chloride and then urea and thiourea to synthesis on derivatives contain the six members ring. Another step included identified and confirmed these compounds by FT- IR, 1HNMR, TLC and 13CNMR finally, step included the assay of biological activity
... Show MoreThe charge transfer at C23H17F8N8O2PRu, C44H30BF4N5O4Ru, C56H52CL5N5OOsP2 and C76H88F80N24O11P10Ru4 nitrosyl complexes are investigation and studies theoretically using the quantum consideration. Charge transfer behavior largely rely to the electric properties of nitrosyl complexes system whose depending on the main important parameters for the transmission rate constant such that: orientation transition energy, overlapping coupling coefficient, driving force energy, height barrier and Temperature T (K). Data results have been evaluated using a MATLAB program. Results show that rate of charge transfer increases due to increases the orientation transition energy.
Complexes of 1-phenyl-3-(2(-5-(phenyl amino)-1,3,4-thiadiazole-2-yl)phenyl) thiourea have been prepared and characteizedby elemental analysis, Ff-[R, and u.v./ visible spectra moreover,determination of metal content M%o by flame atomic absorptionspectroscopy, molar conductance in DMSO solution and magneticmoments (peffl.The result showed that the ligand (L) was coordinated to Mn+2, Ni+2,Ct+2,2n+2,Cd+2, and Hg+2 ions through the nitrogen atoms and sulpheratoms.From the result obtained, rhe following general formula [MLCl2] hasbeen given for the prepared complexes with an octahedral geometryaround the metal ions for all complexes.where M= Mn+2, Ni+2, cu+2, zn+2, cd+2, and Hg+2 l= l-phenyl-3-(2-(5-(phenyl amino
... Show MoreA novel Schiff base (SB) ligand, abbreviated as HDMPM, resulted from the condensation of 2-amino-4-phenyl-5-methyl thiazole and 4-(diethylamino)salicyaldehyde, and its metal complexes with [Co(II), Cu(II), Ni(II), and Zn(II)] ions in high yield were formed. The physico-chemical techniques such as elemental analysis, molar conductance, IR, 1H and 13C NMR, mass spectroscopy, and electronic absorption studies were utilized to characterize the synthesized compounds. The studied compounds were examined for their possible anticancer activity against a number of human cancerous cell lines, including A549 lung carcinoma, HepG2 liver cancer, HCT116 colorectal cancer, and MCF-7 breast cancer cell lines, with doxorubicin serving as the standard. The s
... Show More