Preferred Language
Articles
/
SxeMP48BVTCNdQwCDWY-
Automatic Health Speech Prediction System Using Support Vector Machine
...Show More Authors

Scopus Clarivate Crossref
View Publication
Publication Date
Sat Oct 29 2022
Journal Name
Current Trends In Geotechnical Engineering And Construction
Automatic Co-registration of UAV-Based Photogrammetry and Terrestrial Laser Scanning in Urban Areas
...Show More Authors

View Publication
Scopus (2)
Scopus Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Journal Of Engineering
Automatic Spike Neural Technique for Slicing Bandwidth Estimated Virtual Buffer-Size in Network Environment
...Show More Authors

The Next-generation networks, such as 5G and 6G, need capacity and requirements for low latency, and high dependability. According to experts, one of the most important features of (5 and 6) G networks is network slicing. To enhance the Quality of Service (QoS), network operators may now operate many instances on the same infrastructure due to configuring able slicing QoS. Each virtualized network resource, such as connection bandwidth, buffer size, and computing functions, may have a varied number of virtualized network resources. Because network resources are limited, virtual resources of the slices must be carefully coordinated to meet the different QoS requirements of users and services. These networks may be modifie

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Feb 02 2010
Journal Name
Advances In Software Engineering
A Strategy for Automatic Quality Signing and Verification Processes for Hardware and Software Testing
...Show More Authors

We propose a novel strategy to optimize the test suite required for testing both hardware and software in a production line. Here, the strategy is based on two processes: Quality Signing Process and Quality Verification Process, respectively. Unlike earlier work, the proposed strategy is based on integration of black box and white box techniques in order to derive an optimum test suite during the Quality Signing Process. In this case, the generated optimal test suite significantly improves the Quality Verification Process. Considering both processes, the novelty of the proposed strategy is the fact that the optimization and reduction of test suite is performed by selecting only mutant killing test cases from cumulating t-way test ca

... Show More
View Publication
Crossref (7)
Crossref
Publication Date
Thu Jan 13 2022
Journal Name
Medical & Biological Engineering & Computing
An integrated entropy-spatial framework for automatic gender recognition enhancement of emotion-based EEGs
...Show More Authors

View Publication
Scopus (12)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Wed Oct 02 2024
Journal Name
International Development Planning Review
DESIGNING AN AUXILIARY DEVICE AND ITS IMPACT ON LEARNING THE SKILLS OF ANGULAR SUPPORT AND OPEN SUPPORT FOR HANDSTAND PUSH-UPS ON THE PARALLEL APPARATUS IN ARTISTIC GYMNASTICS FOR BUDS
...Show More Authors

Publication Date
Fri Apr 26 2024
Journal Name
Mathematical Modelling Of Engineering Problems
Solving Tri-criteria: Total Completion Time, Total Earliness, and Maximum Tardiness Using Exact and Heuristic Methods on Single-Machine Scheduling Problems
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Thu Nov 02 2023
Journal Name
Journal Of Engineering
Prediction Unconfined Compressive Strength for Different Lithology Using Various Wireline Type and Core Data for Southern Iraqi Field
...Show More Authors

Unconfined Compressive Strength is considered the most important parameter of rock strength properties affecting the rock failure criteria.  Various research have developed rock strength for specific lithology to estimate high-accuracy value without a core.  Previous analyses did not account for the formation's numerous lithologies and interbedded layers. The main aim of the present study is to select the suitable correlation to predict the UCS for hole depth of formation without separating the lithology. Furthermore, the second aim is to detect an adequate input parameter among set wireline to determine the UCS by using data of three wells along ten formations (Tanuma, Khasib, Mishrif, Rumaila, Ahmady, Maudud, Nahr Um

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Mar 14 2022
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Mathematical simulation of memristive for classification in machine learning
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Cybersecurity And Information Management
Machine Learning-based Information Security Model for Botnet Detection
...Show More Authors

Botnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet

... Show More
View Publication
Scopus (10)
Crossref (7)
Scopus Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
An Adaptive Harmony Search Part-of-Speech tagger for Square Hmong Corpus
...Show More Authors

Data-driven models perform poorly on part-of-speech tagging problems with the square Hmong language, a low-resource corpus. This paper designs a weight evaluation function to reduce the influence of unknown words. It proposes an improved harmony search algorithm utilizing the roulette and local evaluation strategies for handling the square Hmong part-of-speech tagging problem. The experiment shows that the average accuracy of the proposed model is 6%, 8% more than HMM and BiLSTM-CRF models, respectively. Meanwhile, the average F1 of the proposed model is also 6%, 3% more than HMM and BiLSTM-CRF models, respectively.

View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref