Preferred Language
Articles
/
SxeBII8BVTCNdQwCLly5
Comparison of Robust Circular S and Circular Least Squares Estimators for Circular Regression Model using Simulation
...Show More Authors

In this paper, the Monte-Carlo simulation method was used to compare the robust circular S estimator with the circular Least squares method in the case of no outlier data and in the case of the presence of an outlier in the data through two trends, the first is contaminant with high inflection points that represents contaminant in the circular independent variable, and the second the contaminant in the vertical variable that represents the circular dependent variable using three comparison criteria, the median standard error (Median SE), the median of the mean squares of error (Median MSE), and the median of the mean cosines of the circular residuals (Median A(k)). It was concluded that the method of least squares is better than the methods of the robust circular S method in the case that the data does not contain outlier values because it was recorded the lowest mean criterion, mean squares error (Median MSE), the least median standard error (Median SE) and the largest value of the criterion of the mean cosines of the circular residuals A(K) for all proposed sample sizes (n=20, 50, 100). In the case of the contaminant in the vertical data, it was found that the circular least squares method is not preferred at all contaminant rates and for all sample sizes, and the higher the percentage of contamination in the vertical data, the greater the preference of the validity of estimation methods, where the mean criterion of median squares of error (Median MSE) and criterion of median standard error (Median SE) decrease and the value of the mean criterion of the mean cosines of the circular residuals A(K) increases for all proposed sample sizes. In the case of the contaminant at high lifting points, the circular least squares method is not preferred by a large percentage at all levels of contaminant and for all sample sizes, and the higher the percentage of the contaminant at the lifting points, the greater the preference of the validity estimation methods, so that the mean criterion of mean squares of error (Median MSE) and criterion of median standard error (Median SE) decrease, and the value of the mean criterion increases for the mean cosines of the circular residuals A(K) and for all sample sizes.

Crossref
View Publication
Publication Date
Sat Dec 30 2023
Journal Name
Journal Of Economics And Administrative Sciences
About Semi-parametric Methodology for Fuzzy Quantile Regression Model Estimation: A Review
...Show More Authors

In this paper, previous studies about Fuzzy regression had been presented. The fuzzy regression is a generalization of the traditional regression model that formulates a fuzzy environment's relationship to independent and dependent variables. All this can be introduced by non-parametric model, as well as a semi-parametric model. Moreover, results obtained from the previous studies and their conclusions were put forward in this context. So, we suggest a novel method of estimation via new weights instead of the old weights and introduce

Paper Type: Review article.

another suggestion based on artificial neural networks.

View Publication Preview PDF
Crossref
Publication Date
Thu Dec 01 2011
Journal Name
Journal Of Engineering
SIMULATION MODEL FOR THE ASSESSMENT OF DIRECT AND INDIRECT GEOREFERENCING TECHNIQUES IN ANALYTICAL PHOTOGRAMMETRY
...Show More Authors

This paper compares between the direct and indirect georeferencing techniques in Photogrammetry bases on a simulation model. A flight plan is designed which consists of three strips with nine overlapped images for each strip by a (Canon 500D) digital camera with a resolution of 15 Mega Pixels.

 

The triangulation computations are carried out by using (ERDAS LPS) software, and the direct measurements are taken directly on the simulated model to substitute using GPS/INS in real case. Two computational tests have been implemented to evaluate the positional accuracy for the whole model and the Root Mean Square Error (RMSE) relating to (30) check points show that th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Engineering
Simulation Model for the Assessment of Direct and Indirect Georeferencing Techniques in Analytical Photogrammetry
...Show More Authors

B Saleem, H Alwan, L Khalid, Journal of Engineering, 2011 - Cited by 2

View Publication
Publication Date
Tue Oct 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of some robust methods in the presence of problems of multicollinearity and high leverage points
...Show More Authors

Abstract

The multiple linear regression model of the important regression models used in the analysis for different fields of science Such as business, economics, medicine and social sciences high in data has undesirable effects on analysis results . The multicollinearity is a major problem in multiple linear regression. In its simplest state, it leads to the departure of the model parameter that is capable of its scientific properties, Also there is an important problem in regression analysis is the presence of high leverage points in the data have undesirable effects on the results of the analysis , In this research , we present some of

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
A comparison between Bayesian Method and Full Maximum Likelihood to estimate Poisson regression model hierarchy and its application to the maternal deaths in Baghdad
...Show More Authors

Abstract:

 This research aims to compare Bayesian Method and Full Maximum Likelihood to estimate hierarchical Poisson regression model.

The comparison was done by  simulation  using different sample sizes (n = 30, 60, 120) and different Frequencies (r = 1000, 5000) for the experiments as was the adoption of the  Mean Square Error to compare the preference estimation methods and then choose the best way to appreciate model and concluded that hierarchical Poisson regression model that has been appreciated Full Maximum Likelihood Full Maximum Likelihood  with sample size  (n = 30) is the best to represent the maternal mortality data after it has been reliance value param

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Using the Logistic Regression Model in Studding the Assistant Factors to Diagnose Bladder Cancer
...Show More Authors

The cancer is one of the biggest health problems that facing the world . And  the bladder cancer has a special place among the most spread cancers in Arab countries specially in Iraq and Egypt(2) . It is one of the diseases which can be treated and cured if it is diagnosed early . This research is aimed at studying the assistant factors that diagnose bladder cancer such as (patient's age , gender , and other major complains of hematuria , burning or pain during urination and micturition disorders) and then determine which factors are the most effective in the possibility of diagnosing this disease by using the statistical model (logistic regression model) and depending on a random sample of (128) patients . After

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Journal Of Economics And Administrative Sciences
Robust estimation of multiple linear regression parameters in the presence of a problem of heterogeneity of variance and outliers values
...Show More Authors

Often times, especially in practical applications, it is difficult to obtain data that is not tainted by a problem that may be related to the inconsistency of the variance of error or any other problem that impedes the use of the usual methods represented by the method of the ordinary least squares (OLS), To find the capabilities of the features of the multiple linear models, This is why many statisticians resort to the use of estimates by immune methods Especially with the presence of outliers, as well as the problem of error Variance instability, Two methods of horsepower were adopted, they are the robust weighted least square(RWLS)& the two-step robust weighted least square method(TSRWLS), and their performance was verifie

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Feb 01 2021
Journal Name
Journal Of Physics: Conference Series
Bayesian Computational Methods of the Logistic Regression Model
...Show More Authors
Abstract<p>In this paper, we will discuss the performance of Bayesian computational approaches for estimating the parameters of a Logistic Regression model. Markov Chain Monte Carlo (MCMC) algorithms was the base estimation procedure. We present two algorithms: Random Walk Metropolis (RWM) and Hamiltonian Monte Carlo (HMC). We also applied these approaches to a real data set.</p>
View Publication Preview PDF
Scopus (4)
Crossref (4)
Scopus Crossref
Publication Date
Mon Jun 22 2015
Journal Name
International Journal Of Industrial Management
Regression Factors of Small Businesses Performance: Conceptual Model
...Show More Authors

This study represents an attempt to develop a model that demonstrates the relationship between HRM Practices, Governmental Support and Organizational performance of small businesses. Furthermore, this study assay to unfold the socalled “Black Box” to clarify the ambiguous relationship between HRM practices and organizational performance by considering the pathway of logical sequence influence. The model of this study consists two parts, the first part devoted to examining the causal relationships among HRM practices, employees’ outcomes, and organizational performance. The second part assesses the direct relationship between the governmental support and organizational performance. It is hypothesized that HRM practices positively influ

... Show More
View Publication Preview PDF
Publication Date
Thu Nov 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Estimates Nonparametric In Multiple Regression Analysis Function (Gamma ,Beta)
...Show More Authors

The use of non-parametric models and subsequent estimation methods requires that many of the initial conditions that must be met to represent those models of society under study are appropriate, prompting researchers to look for more flexible models, which are represented by non-parametric models                  

          In this study, the most important and most widespread estimations of the estimation of the nonlinear regression function were investigated using Nadaraya-Watson and Regression Local Ploynomial, which are one of the types of non-linear

... Show More
View Publication Preview PDF
Crossref